
Differentially Private Release and Learning of Threshold Functions

Mark Bun∗ Kobbi Nissim† Uri Stemmer‡ Salil Vadhan§

April 28, 2015

Abstract

We prove new upper and lower bounds on the sample complexity of (ε, δ) differentially pri-
vate algorithms for releasing approximate answers to threshold functions. A threshold function
cx over a totally ordered domain X evaluates to cx(y) = 1 if y ≤ x, and evaluates to 0 oth-
erwise. We give the first nontrivial lower bound for releasing thresholds with (ε, δ) differential
privacy, showing that the task is impossible over an infinite domain X, and moreover requires
sample complexity n ≥ Ω(log∗ |X|), which grows with the size of the domain. Inspired by the
techniques used to prove this lower bound, we give an algorithm for releasing thresholds with
n ≤ 2(1+o(1)) log∗ |X| samples. This improves the previous best upper bound of 8(1+o(1)) log∗ |X|

(Beimel et al., RANDOM ’13).
Our sample complexity upper and lower bounds also apply to the tasks of learning distri-

butions with respect to Kolmogorov distance and of properly PAC learning thresholds with
differential privacy. The lower bound gives the first separation between the sample complexity
of properly learning a concept class with (ε, δ) differential privacy and learning without privacy.
For properly learning thresholds in ` dimensions, this lower bound extends to n ≥ Ω(` · log∗ |X|).

To obtain our results, we give reductions in both directions from releasing and properly
learning thresholds and the simpler interior point problem. Given a database D of elements from
X, the interior point problem asks for an element between the smallest and largest elements in
D. We introduce new recursive constructions for bounding the sample complexity of the interior
point problem, as well as further reductions and techniques for proving impossibility results for
other basic problems in differential privacy.

Keywords: differential privacy, PAC learning, lower bounds, threshold functions, fingerprinting
codes

∗School of Engineering & Applied Sciences, Harvard University. mbun@seas.harvard.edu,
http://seas.harvard.edu/~mbun. Supported by an NDSEG fellowship and NSF grant CNS-1237235.
†Dept. of Computer Science, Ben-Gurion University and Harvard University. Work done when K.N. was visiting

the Center for Research on Computation & Society, Harvard University. Supported by NSF grant CNS-1237235, a
gift from Google, Inc., and a Simons Investigator grant. kobbi@cs.bgu.ac.il, kobbi@seas.harvard.edu.
‡Dept. of Computer Science, Ben-Gurion University. stemmer@cs.bgu.ac.il. Supported by the Ministry of

Science and Technology (Israel), by the Check Point Institute for Information Security, by the IBM PhD Fellowship
Awards Program, and by the Frankel Center for Computer Science.
§Center for Research on Computation & Society, School of Engineering & Applied Sciences, Harvard University.

salil@seas.harvard.edu, http://seas.harvard.edu/~salil. Supported by NSF grant CNS-1237235, a gift from
Google, Inc., and a Simons Investigator grant.

ar
X

iv
:1

50
4.

07
55

3v
1

 [
cs

.C
R

]
 2

8
A

pr
 2

01
5

1 Introduction

The line of work on differential privacy [DMNS06] is aimed at enabling useful statistical analyses on
privacy-sensitive data while providing strong privacy protections for individual-level information.
Privacy is achieved in differentially private algorithms through randomization and the introduction
of “noise” to obscure the effect of each individual, and thus differentially private algorithms can be
less accurate than their non-private analogues. Nevertheless, by now a rich literature has shown
that many data analysis tasks of interest are compatible with differential privacy, and generally
the loss in accuracy vanishes as the number n of individuals tends to infinity. However, in many
cases, there is still is a price of privacy hidden in these asymptotics — in the rate at which the loss
in accuracy vanishes, and in how large n needs to be to start getting accurate results at all (the
“sample complexity”).

In this paper, we consider the price of privacy for three very basic types of computations
involving threshold functions: query release, distribution learning with respect to Kolmogorov
distance, and (proper) PAC learning. In all cases, we show for the first time that accomplishing these
tasks with differential privacy is impossible when the data universe is infinite (e.g. N or [0, 1]) and in
fact that the sample complexity must grow with the size |X| of the data universe: n = Ω(log∗ |X|),
which is tantalizingly close to the previous upper bound of n = 2O(log∗ |X|) [BNS13b]. We also
provide simpler and somewhat improved upper bounds for these problems, reductions between
these problems and other natural problems, as well as additional techniques that allow us to prove
impossibility results for infinite domains even when the sample complexity does not need to grow
with the domain size (e.g. for PAC learning of point functions with “pure” differential privacy).

1.1 Differential Privacy

We recall the definition of differential privacy. We think of a dataset as consisting of n rows from a
data universe X, where each row corresponds to one individual. Differential privacy requires that
no individual’s data has a significant effect on the distribution of what we output.

Definition 1.1. A randomized algorithm M : Xn → Y is (ε, δ) differentially private if for every
two datasets x, x′ ∈ Xn that differ on one row, and every set T ⊆ Y , we have

Pr[M(x) ∈ T] ≤ eε · Pr[M(x′) ∈ T] + δ.

The original definition from [DMNS06] had δ = 0, and is sometimes referred to as pure dif-
ferential privacy. However, a number of subsequent works have shown that allowing a small (but
negligible) value of δ, referred to as approximate differential privacy, can provide substantial gains
over pure differential privacy [DL09, HT10, DRV10, De12, BNS13b].

The common setting of parameters is to take ε to be a small constant and δ to be negligible
in n (or a given security parameter). To simplify the exposition, we fix ε = 0.1 and δ = 1/nlogn

throughout the introduction (but precise dependencies on these parameters are given in the main
body).

1.2 Private Query Release

Given a set Q of queries q : Xn → R, the query release problem for Q is to output accurate answers
to all queries in Q. That is, we want a differentially private algorithm M : Xn → R|Q| such that

1

for every dataset D ∈ Xn, with high probability over y ← M(D), we have |yq − q(D)| ≤ α for all
q ∈ Q, for an error parameter α.

A special case of interest is the case where Q consists of counting queries. In this case, we are
given a set Q of predicates q : X → {0, 1} on individual rows, and then extend them to databases
by averaging. That is, q(D) = (1/n)

∑D
i=1 q(Di) counts the fraction of the population that satisfies

predicate q.
The query release problem for counting queries is one of the most widely studied problems in

differential privacy. Early work on differential privacy implies that for every family of counting
queries Q, the query release problem for Q has sample complexity at most Õ(

√
|Q|) [DN03, DN04,

BDMN05, DMNS06]. That is, there is an n0 = Õ(
√
|Q|) such that for all n ≥ n0, there is a

differentially private mechanism M : Xn → RQ that solves the query release problem for Q with
error at most α = 0.01. (Again, we treat α as a small constant to avoid an extra parameter in the
introduction.)

Remarkably, Blum, Ligett, and Roth [BLR08] showed that if the data universe X is finite, then
the sample complexity grows much more slowly with |Q| — indeed the query release problem for
Q has sample complexity at most O((log |X|)(log |Q|)). Hardt and Rothblum [HR10] improved
this bound to Õ(log |Q| ·

√
log |X|), which was recently shown to be optimal for some families

Q [BUV14].
However, for specific query families of interest, the sample complexity can be significantly

smaller. In particular, consider the family of point functions over X, which is the family {qx}x∈X
where qx(y) is 1 iff y = x, and the family of threshold functions over X, where qx(y) is 1 iff y ≤ x
(where X is a totally ordered set). The query release problems for these families correspond to
the very natural tasks of producing `∞ approximations to the histogram and to the cumulative
distribution function of the empirical data distribution, respectively. For point functions, Beimel,
Nissim, and Stemmer [BNS13b] showed that the sample complexity has no dependence on |X| (or
|Q|, since |Q| = |X| for these families). In the case of threshold functions, they showed that it has
at most a very mild dependence on |X| = |Q|, namely 2O(log∗ |X|).

Thus, the following basic questions remained open: Are there differentially private algorithms
for releasing threshold functions over an infinite data universe (such as N or [0, 1])? If not, does the
sample complexity for releasing threshold functions grow with the size |X| of the data universe?

We resolve these questions:

Theorem 1.2. The sample complexity of releasing threshold functions over a data universe X with
differential privacy is at least Ω(log∗ |X|). In particular, there is no differentially private algorithm
for releasing threshold functions over an infinite data universe.

In addition, inspired by the ideas in our lower bound, we present a simplification of the algorithm
of [BNS13b] and improve the sample complexity to 2(1+o(1)) log∗ |X| (from roughly 8log∗ |X|). Closing
the gap between the lower bound of ≈ log∗ |X| and the upper bound of ≈ 2log∗ |X| remains an
intriguing open problem.

We remark that in the case of pure differential privacy (δ = 0), a sample complexity lower
bound of n = Ω(log |X|) follows from a standard “packing argument” [HT10, BKN10]. For point
functions, this is matched by the standard Laplace mechanism [DMNS06]. For threshold functions,
a matching upper bound was recently obtained [RR14], building on a construction of [DNPR10].
We note that these algorithms have a slightly better dependence on the accuracy parameter α than
our algorithm (linear rather than nearly linear in 1/α). In general, while packing arguments often

2

yield tight lower bounds for pure differential privacy, they fail badly for approximate differential
privacy, for which much less is known.

There is also a beautiful line of work on characterizing the `2-accuracy achievable for query
release in terms of other measures of the “complexity” of the family Q (such as “hereditary dis-
crepancy”) [HT10, BDKT12, MN12, NTZ13]. However, the characterizations given in these works
are tight only up to factors of poly(log |X|, log |Q|) and thus do not give good estimates of the sam-
ple complexity (which is at most (log |X|)(log |Q|) even for pure differential privacy, as mentioned
above).

1.3 Private Distribution Learning

A fundamental problem in statistics is distribution learning, which is the task of learning an un-
known distribution D given i.i.d. samples from it. The query release problem for threshold functions
is closely related to the problem of learning an arbitrary distribution D on R up to small error in
Kolmogorov (or CDF) distance: Given n i.i.d. samples xi ←R D, the goal of a distribution learner
is to produce a CDF F : X → [0, 1] such that |F (x) − FD(x)| ≤ α for all x ∈ X, where α is
an accuracy parameter. While closeness in Kolmogorov distance is a relatively weak measure of
closeness for distributions, under various structural assumptions (e.g. the two distributions have
probability mass functions that cross in a constant number of locations), it implies closeness in the
much stronger notion of total variation distance. Other works have developed additional techniques
that use weak hypotheses learned under Kolmogorov distance to test and learn distributions under
total variation distance (e.g. [DDS+13, DDS14, DK14]).

The well-known Dvoretzky-Kiefer-Wolfowitz inequality [DKW56] implies that without privacy,
any distribution over X can be learned to within constant error with O(1) samples. On the
other hand, we show that with approximate differential privacy, the task of releasing thresholds
is essentially equivalent to distribution learning. As a consequence, with approximate differential
privacy, distribution learning instead requires sample complexity that grows with the size of the
domain.

Theorem 1.3. The sample complexity of learning arbitrary distributions on a domain X with
differential privacy is at least Ω(log∗ |X|).

We prove Theorem 1.3 by showing that the problem of distribution learning with respect to
Kolmogorov distance with differential privacy is essentially equivalent to query release for thresh-
old functions. Indeed, query release of threshold functions amounts to approximating the empirical
distribution of a dataset with respect to Kolmogorov distance. Approximating the empirical dis-
tribution is of course trivial without privacy (since we are given it as input), but with privacy, it
turns out to have essentially the same sample complexity as the usual distribution learning problem
from i.i.d. samples. More generally, query release for a family Q of counting queries is equivalent to
distribution learning with respect to the distance measure dQ(D,D′) = supq∈Q |E[q(D)]−E[q(D′)]|.

1.4 Private PAC Learning

Kasiviswanathan et al. [KLN+11] defined private PAC learning as a combination of probably ap-
proximately correct (PAC) learning [Val84] and differential privacy. Recall that a PAC learning
algorithm takes some n labeled examples (xi, c(xi)) ∈ X × {0, 1} where the xi’s are i.i.d. samples
of an arbitrary and unknown distribution on a data universe X and c : X → {0, 1} is an unknown

3

concept from some concept class C. The goal of the learning algorithm is to output a hypothesis
h : X → {0, 1} that approximates c well on the unknown distribution. We are interested in PAC
learning algorithms L : (X × {0, 1})n → H that are also differentially private. Here H is the
hypothesis class; if H ⊆ C, then L is called a proper learner.

As with query release and distribution learning, a natural problem is to characterize the sample
complexity — the minimum number n of samples in order to achieve differentially private PAC
learning for a given concept class C. Without privacy, it is well-known that the sample com-
plexity of (proper) PAC learning is proportional to the Vapnik–Chervonenkis (VC) dimension of
the class C [VC71, BEHW89, EHKV89]. In the initial work on differentially private learning,
Kasiviswanathan et al. [KLN+11] showed that O(log |C|) labeled examples suffice for privately
learning any concept class C.1 The VC dimension of a concept class C is always at most log |C|,
but is significantly lower for many interesting classes. Hence, the results of [KLN+11] left open the
possibility that the sample complexity of private learning may be significantly higher than that of
non-private learning.

In the case of pure differential privacy (δ = 0), this gap in the sample complexity was shown to
be unavoidable in general. Beimel, Kasiviswanathan, and Nissim [BKN10] considered the concept
class C of point functions over a data universe X, which have VC dimension 1 and hence can
be (properly) learned without privacy with O(1) samples. In contrast, they showed that proper
PAC learning with pure differential privacy requires sample complexity Ω(log |X|) = Ω(log |C|).
Feldman and Xiao [FX14] showed a similar separation even for improper learning — the class C
of threshold functions over X also has VC dimension 1, but PAC learning with pure differential
privacy requires sample complexity Ω(log |X|) = Ω(log |C|).

For approximate differential privacy (δ > 0), however, it was still open whether there is an
asymptotic gap between the sample complexity of private learning and non-private learning. Indeed,
Beimel et al. [BNS13b] showed that point functions can be properly learned with approximate
differential privacy using O(1) samples (i.e. with no dependence on |X|). For threshold functions,
they exhibited a proper learner with sample complexity 2O(log∗ |X|), but it was conceivable that the
sample complexity could also be reduced to O(1).

We prove that the sample complexity of proper PAC learning with approximate differential
privacy can be asymptotically larger than the VC dimension:

Theorem 1.4. The sample complexity of properly learning threshold functions over a data universe
X with differential privacy is at least Ω(log∗ |X|).

This lower bound extends to the concept class of `-dimensional thresholds. An `-dimensional
threshold function, defined over the domain X`, is a conjunction of ` threshold functions, each
defined on one component of the domain. This shows that our separation between the sample
complexity of private and non-private learning applies to concept classes of every VC dimension.

Theorem 1.5. For every finite, totally ordered X and ` ∈ N, the sample complexity of properly
learning the class C of `-dimensional threshold functions on X` with differential privacy is at least
Ω(` · log∗ |X|) = Ω(VC(C) · log∗ |X|).

Based on these results, it would be interesting to fully characterize the difference between
the sample complexity of proper non-private learners and of proper learners with (approximate)
differential privacy. Furthermore, our results still leave open the possibility that improper PAC

1As with the query release discussion, we omit the dependency on all parameters except for |C|, |X| and VC(C).

4

learning with (approximate) differential privacy has sample complexity O(VC(C)). We consider
this to be an important question for future work.

We also present a new result on improper learning of point functions with pure differential
privacy over infinite countable domains. Beimel et al. [BKN10, BNS13a] showed that for finite data
universes X, the sample complexity of improperly learning point functions with pure differential
privacy does not grow with |X|. They also gave a mechanism for learning point functions over
infinite domains (e.g. X = N), but the outputs of their mechanism do not have a finite description
length (and hence cannot be implemented by an algorithm). We prove that this is inherent:

Theorem 1.6. For every infinite domain X, countable hypothesis space H, and n ∈ N, there is no
(even improper) PAC learner L : (X × {0, 1})n → H for point functions over X that satisfies pure
differential privacy.

1.5 Techniques

Our results for query release and proper learning of threshold functions are obtained by analyzing
the sample complexity of a related but simpler problem, which we call the interior-point problem.
Here we want a mechanism M : Xn → X (for a totally ordered data universe X) such that for every
database D ∈ Xn, with high probability we have miniDi ≤M(D) ≤ maxiDi. We give reductions
showing that the sample complexity of this problem is equivalent to the other ones we study:

Theorem 1.7. Over every totally ordered data universe X, the following four problems have the
same sample complexity (up to constant factors) under differential privacy:

1. The interior-point problem.

2. Query release for threshold functions.

3. Distribution learning (with respect to Kolmogorov distance).

4. Proper PAC learning of threshold functions.

Thus we obtain our lower bounds and our simplified and improved upper bounds for query
release and proper learning by proving such bounds for the interior-point problem, such as:

Theorem 1.8. The sample complexity for solving the interior-point problem over a data universe
X with differential privacy is Ω(log∗ |X|).

Note that for every fixed distribution D over X there exists a simple differentially private
algorithm for solving the interior-point problem (w.h.p.) over databases sampled i.i.d. from D –
simply output a point z s.t. Prx∼D[x ≥ z] = 1/2. Hence, in order to prove Theorem 1.8, we
show a (correlated) distribution D over databases of size n ≈ log∗ |X| on which privately solving
the interior-point problem is impossible. The construction is recursive: we use a hard distribution
over databases of size (n− 1) over a data universe of size logarithmic in |X| to construct the hard
distribution over databases of size n over X.

By another reduction to the interior-point problem, we show an impossibility result for the
following undominated-point problem:

Theorem 1.9. For every n ∈ N, there does not exist a differentially private mechanism M : Nn →
N with the property that for every dataset D ∈ Nn, with high probability M(D) ≥ miniDi.

5

Note that for the above problem, one cannot hope to construct a single distribution over
databases that every private mechanism fails on. The reason is that for any such distribution D,
and any desired failure probability β, there is some number K for which PrD∼D[maxD > K] ≤ β,
and hence that the mechanism that always outputs K solves the problem. Hence, given a mecha-
nismM we must tailor a hard distribution DM. We use a similar mechanism-dependent approach
to prove Theorem 1.6.

2 Preliminaries

Throughout this work, we use the convention that [n] = {0, 1, . . . , n−1} and write log for log2. We
use THRESHX to denote the set of all threshold functions over a totally ordered domain X. That is,

THRESHX = {cx : x ∈ X} where cx(y) = 1 iff y ≤ x.

2.1 Differential Privacy

Our algorithms and reductions rely on a number of basic results about differential privacy. Early
work on differential privacy showed how to solve the query release problem by adding independent
Laplace noise to each exact query answer. A real-valued random variable is distributed as Lap(b)

if its probability density function is f(x) = 1
2b exp(− |x|b). We say a function f : Xn → Rm has

sensitivity ∆ if for all neighboring D,D′ ∈ Xn, it holds that ||f(D)− f(D′)||1 ≤ ∆.

Theorem 2.1 (The Laplace Mechanism [DMNS06]). Let f : Xn → Rn be a sensitivity ∆ function.
The mechanism A that on input D ∈ Xn adds independent noise with distribution Lap(∆/ε) to
each coordinate of f(D) preserves ε-differential privacy.

We will present algorithms that access their input database using (several) differentially private
mechanisms and use the following composition theorem to prove their overall privacy guarantee.

Lemma 2.2 (Composition, e.g. [DL09]). Let M1 : Xn → R1 be (ε1, δ1)-differentially private. Let
M2 : Xn × R1 → R2 be (ε2, δ2)-differentially private for any fixed value of its second argument.
Then the composition M(D) =M2(D,M1(D)) is (ε1 + ε2, δ1 + δ2)-differentially private.

3 The Interior Point Problem

3.1 Definition

In this work we exhibit a close connection between the problems of privately learning and releasing
threshold queries, distribution learning, and solving the interior point problem as defined below.

Definition 3.1. An algorithm A : Xn → X solves the interior point problem on X with error
probability β if for every D ∈ Xn,

Pr[minD ≤ A(D) ≤ maxD] ≥ 1− β,

where the probability is taken over the coins of A. The sample complexity of the algorithm A is
the database size n.

We call a solution x with minD ≤ x ≤ maxD an interior point of D. Note that x need not be
a member of the database D.

6

3.2 Lower Bound

We now prove our lower bound on the sample complexity of private algorithms for solving the
interior point problem.

Theorem 3.2. Fix any constant 0 < ε < 1/4. Let δ(n) ≤ 1/(50n2). Then for every positive integer
n, solving the interior point problem on X with probability at least 3/4 and with (ε, δ(n))-differential
privacy requires sample complexity n ≥ Ω(log∗ |X|).

Our choice of δ = O(1/n2) is unimportant; any monotonically non-increasing convergent series
will do. To prove the theorem, we inductively construct a sequence of database distributions {Dn}
supported on data universes [S(n)] (for S(n + 1) = 2Õ(S(n))) over which any differentially private
mechanism using n samples must fail to solve the interior point problem. Given a hard distribution
Dn over n elements (x1, x2, . . . , xn) from [S(n)], we construct a hard distribution Dn+1 over elements
(y0, y1, . . . , yn) from [S(n+1)] by setting y0 to be a random number, and letting each other yi agree
with y0 on the xi most significant digits. We then show that if y is the output of any differentially
private interior point mechanism on (y0, . . . , yn), then with high probability, y agrees with y0 on at
least minxi entries and at most maxxi entries. Thus, a private mechanism for solving the interior
point problem on Dn+1 can be used to construct a private mechanism for Dn, and so Dn+1 must
also be a hard distribution.

The inductive lemma we prove depends on a number of parameters we now define. Fix 1
4 >

ε, β > 0. Let δ(n) be any positive non-increasing sequence for which

Pn ,
eε

eε + 1
+ (eε + 1)

n∑
j=1

δ(j) ≤ 1− β

for every n. In particular, it suffices that

∞∑
n=1

δ(n) ≤
1
3 − β
eε + 1

.

Let b(n) = 1/δ(n) and define the function S recursively by

S(1) = 2 and S(n+ 1) = b(n)S(n).

Lemma 3.3. For every positive integer n, there exists a distribution Dn over databases D ∈
[S(n)]n = {0, 1, . . . , S(n)− 1}n such that for every (ε, δ(n))-differentially private mechanism M,

Pr[minD ≤M(D) ≤ maxD] ≤ Pn,

where the probability is taken over D ←R Dn and the coins of M.

In this section, we give a direct proof of the lemma and in Appendix B, we show how the
lemma follows from the construction of a new combinatorial object we call an “interior point
fingerprinting code.” This is a variant on traditional fingerprinting codes, which have been used
recently to show nearly optimal lower bounds for other problems in approximate differential privacy
[BUV14, DTTZ14, BST14].

7

Proof. The proof is by induction on n. We first argue that the claim holds for n = 1 by letting D1

be uniform over the singleton databases (0) and (1). To that end let x ←R D1 and note that for
any (ε, δ(1))-differentially private mechanism M0 : {0, 1} → {0, 1} it holds that

Pr[M0(x) = x] ≤ eε Pr[M0(x̄) = x] + δ(1) = eε(1− Pr[M0(x) = x]) + δ(1),

giving the desired bound on Pr[M0(x) = x].
Now inductively suppose we have a distribution Dn that satisfies the claim. We construct a

distribution Dn+1 on databases (y0, y1, . . . , yn) ∈ [S(n+ 1)]n+1 that is sampled as follows:

• Sample (x1, . . . , xn)←R Dn.

• Sample a uniformly random y0 ←R [S(n+ 1)]. We write the base b(n) representation of y0 as

y
(1)
0 y

(2)
0 . . . y

(S(n))
0 .

• For each i = 1, . . . , n let yi be a base b(n) number (written y
(1)
i y

(2)
i . . . y

(S(n))
i) that agrees

with the base b(n) representation of y0 on the first xi digits and contains a random sample
from [b(n)] in every index thereafter.

Suppose for the sake of contradiction that there were an (ε, δ(n+1))-differentially private mechanism
M̂ that could solve the interior point problem on Dn+1 with probability greater than Pn+1. We
use M̂ to construct the following private mechanism M for solving the interior point problem on
Dn, giving the desired contradiction:

Algorithm 1 M(D)

Input: Database D = (x1, . . . , xn) ∈ [S(n)]n

1. Construct D̂ = (y0, . . . , yn) by sampling from Dn+1, but starting with the database D. That
is, sample y0 uniformly at random and set every other yi to be a random base b(n) string
that agrees with y0 on the first xi digits.

2. Compute y ←R M̂(D̂).

3. Return the length of the longest prefix of y (in base b(n) notation) that agrees with y0.

The mechanism M is also (ε, δ(n + 1))-differentially private, since for all pairs of adjacent
databases D ∼ D′ and every T ⊆ [S(n)],

Pr[M(D) ∈ T] = E
y0←R[S(n+1)]

Pr[M̂(D̂) ∈ T̂ | y0]

≤ E
y0←R[S(n+1)]

(eε Pr[M̂(D̂′) ∈ T̂ | y0] + δ) since D̂ ∼ D̂′ for fixed y0

= eε Pr[M(D′) ∈ T] + δ,

where T̂ is the set of y that agree with y0 in exactly the first x entries for some x ∈ T .
Now we argue thatM solves the interior point problem on Dn with probability greater than Pn.

First we show that x ≥ minD with probability greater than Pn+1. Observe that by construction,

8

all the elements of D̂ agree in at least the first minD digits, and hence so does any interior point
of D̂. Therefore, if M′ succeeds in outputting an interior point y of D̂, then y must in particular
agree with y0 in at least minD digits, so x ≥ minD.

Now we use the privacy that M̂ provides to y0 to show that x ≤ maxD except with probability
at most eε/b(n) + δ(n + 1). Fix a database D. Let w = maxD, and fix all the randomness of M
but the (w+ 1)st entry of y0 (note that since w = maxD, this fixes y1, . . . , yn). Since the (w+ 1)st
entry of y0 is still a uniformly random element of [b(n)], the privately produced entry yw+1 should

not be able to do much better than randomly guessing y
(w+1)
0 . Formally, for each z ∈ [b(n)], let

D̂z denote the database D̂ with y
(w+1)
0 set to z and everything else fixed as above. Then by the

differential privacy of M̂,

Pr
z∈[b(n)]

[M̂(D̂z)
w+1 = z] =

1

b(n)

∑
z∈[b(n)]

Pr[M̂(D̂z)
w+1 = z]

≤ 1

b(n)

∑
z∈[b(n)]

E
z′←R[b(n)]

[
eε Pr[M̂(D̂z′)

w+1 = z] + δ(n+ 1)
]

≤ eε

b(n)
+ δ(n+ 1),

where all probabilities are also taken over the coins of M̂. Thus x ≤ maxD except with probability
at most eε/b(n) + δ(n+ 1). By a union bound, minD ≤ x ≤ maxD with probability greater than

Pn+1 −
(

eε

b(n)
+ δ(n+ 1)

)
≥ Pn.

This gives the desired contradiction.

We now prove Theorem 3.2 by estimating the S(n) guaranteed by Lemma 3.3.

Proof of Theorem 3.2. Let S(n) be as in Lemma 3.3. We introduce the following notation for
iterated exponentials:

tower(0)(x) = x and tower(k)(x) = 2tower(k−1)(x).

Observe that for k ≥ 1, x > 0, and M > 16,

M tower(k)(x) = 2tower(k)(x) logM

= tower(2)(tower(k−1)(x) + log logM)

≤ tower(2)(tower(k−1)(x+ log logM))

= tower(k+1)(x+ log logM).

By induction on n we get an upper bound of

S(n+ 1) ≤ tower(n)(2 + n log log(cn2)) ≤ tower(n+log∗(cn2))(1).

9

This immediately shows that solving the interior point problem on X = [S(n)] requires sample
complexity

n ≥ log∗ S(n)− log∗(cn2)

≥ log∗ S(n)−O(log∗ log∗ S(n))

= log∗ |X| −O(log∗ log∗ |X|).

To get a lower bound for solving the interior point problem on X when |X| is not of the form S(n),
note that a mechanism for X is also a mechanism for every X ′ s.t. |X ′| ≤ |X|. The lower bound
follows by setting |X ′| = S(n) for the largest n such that S(n) ≤ |X|.

3.3 Upper Bound

We now present a recursive algorithm, RecPrefix, for privately solving the interior point problem.

Theorem 3.4. Let β, ε, δ > 0, let X be a finite, totally ordered domain, and let n ∈ N with
n ≥ 18500

ε · 2log∗ |X| · log∗(|X|) · ln(4 log∗ |X|
βεδ). If RecPrefix (defined below) is executed on a database

S ∈ Xn with parameters β
3 log∗ |X| ,

ε
2 log∗ |X| ,

δ
2 log∗ |X| , then

1. RecPrefix is (ε, δ)-differentially private;

2. With probability at least (1− β), the output x satisfies min{xi : xi ∈ S} ≤ x ≤ max{xi : xi ∈
S}.

The idea of the algorithm is that on each level of recursion, RecPrefix takes an input database
S over X and constructs a database S′ over a smaller universe X ′, where |X ′| = log |X|, in which
every element is the length of the longest prefix of a pair of elements in S (represented in binary).
In a sense, this reverses the construction presented in Section 3.2.

3.3.1 The exponential and choosing mechanisms

Before formally presenting the algorithm RecPrefix, we introduce several additional algorithmic
tools. One primitive we will use is the exponential mechanism of McSherry and Talwar [MT07].
Let X∗ denote the set of all finite databases over the universe X. A quality function q : X∗×F → N
defines an optimization problem over the domain X and a finite solution set F : Given a database
S ∈ X∗, choose f ∈ F that (approximately) maximizes q(S, f). The exponential mechanism solves
such an optimization problem by choosing a random solution where the probability of outputting
any solution f increases exponentially with its quality q(D, f). Specifically, it outputs each f ∈ F
with probability ∝ exp (ε · q(S, f)/2∆q). Here, the sensitivity of a quality function, ∆q, is the
maximum over all f ∈ F of the sensitivity of the function q(·, f).

Proposition 3.5 (Properties of the Exponential Mechanism).

1. The exponential mechanism is ε-differentially private.

2. Let q be a quality function with sensitivity at most 1. Fix a database S ∈ Xn and let OPT =
maxf∈F{q(S, f)}. Let t > 0. Then exponential mechanism outputs a solution f with q(S, f) ≤
OPT−tn with probability at most |F| · exp(−εtn/2).

10

We will also use an (ε, δ)-differentially private variant of the exponential mechanism called the
choosing mechanism, introduced in [BNS13b].

A quality function with sensitivity at most 1 is of k-bounded-growth if adding an element to a
database can increase (by 1) the score of at most k solutions, without changing the scores of other
solutions. Specifically, it holds that

1. q(∅, f) = 0 for all f ∈ F ,

2. If S2 = S1 ∪ {x}, then q(S1, f) + 1 ≥ q(S2, f) ≥ q(S1, f) for all f ∈ F , and

3. There are at most k values of f for which q(S2, f) = q(S1, f) + 1.

The choosing mechanism is a differentially private algorithm for approximately solving bounded-
growth choice problems. Step 1 of the algorithm checks whether a good solution exists (otherwise
any solution is approximately optimal) and Step 2 invokes the exponential mechanism, but with
the small set G(S) of good solutions instead of F .

Algorithm 2 Choosing Mechanism

Input: database S, quality function q, solution set F , and parameters β, ε, δ and k.

1. Set ÕPT = OPT + Lap(4
ε). If ÕPT < 8

ε ln(4k
βεδ) then halt and return ⊥.

2. Let G(S) = {f ∈ F : q(S, f) ≥ 1}. Choose and return f ∈ G(S) using the exponential
mechanism with parameter ε

2 .

The following lemmas give the privacy and utility guarantees of the choosing mechanism. We
give a slightly improved utility result over [BNS13b], and the analysis is presented in Appendix A.

Lemma 3.6. Fix δ > 0, and 0 < ε ≤ 2. If q is a k-bounded-growth quality function, then the
choosing mechanism is (ε, δ)-differentially private.

Lemma 3.7. Let the choosing mechanism be executed on a k-bounded-growth quality function, and
on a database S s.t. there exists a solution f̂ with quality q(S, f̂) ≥ 16

ε ln(4k
βεδ). With probability at

least (1− β), the choosing mechanism outputs a solution f with quality q(S, f) ≥ 1.

Lemma 3.8. Let the choosing mechanism be executed on a k-bounded-growth quality function, and
on a database S containing m elements. With probability at least (1− β), the choosing mechanism
outputs a solution f with quality q(S, f) ≥ OPT−16

ε ln(4km
βεδ).

3.3.2 The RecPrefix algorithm

We are now ready to present and analyze the algorithm RecPrefix.

11

Algorithm 3 RecPrefix

Input: Database S = (xj)
n
j=1 ∈ Xn, parameters β, ε, δ.

1. If |X| ≤ 32, then use the exponential mechanism with privacy parameter ε and quality
function q(S, x) = min {#{j : xj ≥ x},#{j : xj ≤ x}} to choose and return a point x ∈ X.

2. Let k = b386
ε ln(4

βεδ)c, and let Y = (y1, y2, . . . , yn−2k) be a random permutation of the
smallest (n−2k) elements in S.

3. For j = 1 to n−2k
2 , define zj as the length of the longest prefix for which y2j−1 agrees with

y2j (in base 2 notation).

4. Execute RecPrefix recursively on S′ = (zj)
(n−2k)/2
j=1 ∈ (X ′)(n−2k)/2 with parameters β, ε, δ.

Recall that |X ′| = log |X|. Denote the returned value by z.

5. Use the choosing mechanism to choose a prefix L of length (z + 1) with a large number
of agreements among elements in S. Use parameters β, ε, δ, and the quality function q :
X∗ ×Xz+1 → N, where q(S, I) is the number of agreements on I among x1, . . . , xn.

6. For σ ∈ {0, 1}, define Lσ ∈ X to be the prefix L followed by (log |X| − z − 1) appearances
of σ.

7. Compute b̂ig = Lap(1
ε) + #{j : xj ≥ L1}.

8. If b̂ig ≥ 3k
2 then return L1. Otherwise return L0.

We start the analysis of RecPrefix with the following two simple observations.

Observation 3.9. There are at most log∗ |X| recursive calls throughout the execution of RecPrefix
on a database S ∈ X∗.

Observation 3.10. Let RecPrefix be executed on a database S ∈ Xn, where n ≥ 2log∗ |X| · 2312
ε ·

ln(4
βεδ). Every recursive call throughout the execution operates on a database containing at least

1540
ε · ln(4

βεδ) elements.

Proof. This follows from Observation 3.9 and from the fact that the ith recursive call is executed
on a database of size ni = n

2i−1 − k
∑i−2

`=0(1
2)` ≥ n

2i
− 2k.

We now analyze the utility guarantees of RecPrefix by proving the following lemma.

Lemma 3.11. Let β, ε, δ, and S ∈ Xn be inputs on which RecPrefix performs at most N recursive
calls, all of which are on databases of at least 1540

ε · ln(4
βεδ) elements. With probability at least

(1− 3βN), the output x is s.t.

1. ∃xi ∈ S s.t. xi ≤ x;

2. |{i : xi ≥ x}| ≥ k , b386
ε · ln(4

βεδ)c.

Before proving the lemma, we make a combinatorial observation that motivates the random
shuffling in Step 2 of RecPrefix. A pair of elements y, y′ ∈ S is useful in Algorithm RecPrefix if
many of the values in S lie between y and y′ – a prefix on which y, y′ agree is also a prefix of every

12

element between y and y′. A prefix common to a useful pair can hence be identified privately via
stability-based techniques. Towards creating useful pairs, the set S is shuffled randomly. We will
use the following lemma:

Claim 3.12. Let (Π1,Π2, . . . ,Πn) be a random permutation of (1, 2, . . . , n). Then for all r ≥ 1,

Pr
[∣∣∣{i : |Π2i−1 −Π2i| ≤

r

12

}∣∣∣ ≥ r] ≤ 2−r

Proof. We need to show that w.h.p. there are at most r “bad” pairs (Π2i−1,Π2i) within distance
r
12 . For each i, we call Π2i−1 the left side of the pair, and Π2i the right side of the pair. Let us first
choose r elements to be placed on the left side of r bad pairs (there are

(
n
r

)
such choices). Once

those are fixed, there are at most (r6)r choices for placing elements on the right side of those pairs.
Now we have r pairs and n− 2r unpaired elements that can be shuffled in (n− r)! ways. Overall,
the probability of having at least r bad pairs is at most(

n
r

)
(r6)r(n− r)!

n!
=

(r6)r

r!
≤

(r6)r
√
rrre−r

=
er√
r6r
≤ 2−r,

where we have used Stirling’s approximation for the first inequality.

Suppose we have paired random elements in our input database S, and constructed a database
S′ containing lengths of the prefixes for those pairs. Moreover, assume that by recursion we have
identified a length z which is the length at least r random pairs. Although those prefixes may be
different for each pair, Claim 3.12 guarantees that (w.h.p.) at least one of these prefixes is the
prefix of at least r

12 input elements. This will help us in (privately) identifying such a prefix.

Proof of Lemma 3.11. The proof is by induction on the number of recursive calls, denoted as t.
For t = 1 (i.e., |X| ≤ 32), the claim holds as long as the exponential mechanism outputs an
x with q(S, x) ≥ k except with probability at most β. By Proposition 3.5, it suffices to have
n ≥ 1540

ε · ln(4
βεδ), since 32 exp(−ε(n/2− k)/2) ≤ β.

Assume that the stated lemma holds whenever RecPrefix performs at most t− 1 recursive calls.
Let β, ε, δ and S = (xi)

n
i=1 ∈ Xn be inputs on which algorithm RecPrefix performs t recursive calls,

all of which are on databases containing at least 1540
ε · ln(4

βεδ) elements. Consider the first call in
the execution on those inputs, and let y1, . . . , yn−2k be the random permutation chosen on Step 2.
We say that a pair y2j−1, y2j is close if∣∣∣∣∣∣i :

y2j−1 ≤ yi ≤ y2j

or
y2j ≤ yi ≤ y2j−1

∣∣∣∣∣∣ ≤ k − 1

12
.

By Claim 3.12, except with probability at most 2−(k−1) < β, there are at most (k − 1) close pairs.
We continue the proof assuming that this is the case.

Let S′ = (zi)
(n−2k)/2
i=1 be the database constructed in Step 3. By the inductive assumption, with

probability at least (1 − 3β(t − 1)), the value z obtained in Step 4 is s.t. (1) ∃zi ∈ S′ s.t. zi ≤ z;
and (2) |{zi ∈ S′ : zi ≥ z}| ≥ k. We proceed with the analysis assuming that this event happened.

By (2), there are at least k pairs y2j−1, y2j that agree on a prefix of length at least z. At least
one of those pairs, say y2j∗−1, y2j∗ , is not close. Note that every y between y2j∗−1 and y2j∗ agrees

13

on the same prefix of length z, and that there are at least k−1
12 such elements in S. Moreover, as

the next bit is either 0 or 1, at least half of those elements agree on a prefix of length (z+1). Thus,
when using the choosing mechanism on Step 5 (to choose a prefix of length (z+ 1)), there exists at
least one prefix with quality at least k−1

24 ≥
16
ε · ln(4

βεδ). By Lemma 3.8, the choosing mechanism
ensures, therefore, that with probability at least (1−β), the chosen prefix L is the prefix of at least
one yi′ ∈ S, and, hence, this yi′ satisfies L0 ≤ yi′ ≤ L1 (defined in Step 6). We proceed with the
analysis assuming that this is the case.

Let zĵ ∈ S
′ be s.t. zĵ ≤ z. By the definition of zĵ , this means that y2ĵ−1 and y2ĵ agree on a

prefix of length at most z. Hence, as L is of length z+ 1, we have that either min{y2ĵ−1, y2ĵ} < L0

or max{y2ĵ−1, y2ĵ} > L1. If min{y2ĵ−1, y2ĵ} < L0, then L0 satisfies Condition 1 of being a good
output. It also satisfies Condition 2 because yi′ ≥ L0 and yi′ ∈ Y , which we took to be the smallest
n− 2k elements of S. Similarly, L1 is a good output if max{y2ĵ−1, y2ĵ} > L1. In any case, at least
one out of L0, L1 is a good output.

If both L0 and L1 are good outputs, then Step 8 cannot fail. We have already established
the existence of L0 ≤ yi′ ≤ L1. Hence, if L1 is not a good output, then there are at most (k−1)

elements xi ∈ S s.t. xi ≥ L1. Hence, the probability of b̂ig ≥ 3k/2 and Step 8 failing is at most
exp(− εk

2) ≤ β. It remains to analyze the case where L0 is not a good output (and L1 is).
If L0 is not a good output, then every xj ∈ S satisfies xj > L0. In particular, min{y2ĵ−1, y2ĵ} >

L0, and, hence, max{y2ĵ−1, y2ĵ} > L1. Recall that there are at least 2k elements in S which are

bigger than max{y2ĵ−1, y2ĵ}. As k ≥ 2
ε ln(1

β), the probability that b̂ig < 3k/2 and RecPrefix fails
to return L1 in this case is at most β.

All in all, RecPrefix fails to return an appropriate x with probability at most 3βt.

We now proceed with the privacy analysis.

Lemma 3.13. When executed for N recursive calls, RecPrefix is (2εN, 2δN)-differentially private.

Proof. The proof is by induction on the number of recursive calls, denoted by t. For t = 1 (i.e.,
|X| ≤ 32), then by Proposition 3.5 the exponential mechanism ensures that RecPrefix is (ε, 0)-
differentially private. Assume that the stated lemma holds whenever RecPrefix performs at most
t−1 recursive calls, and let S1, S2 ∈ X∗ be two neighboring databases on which RecPrefix performs
t recursive calls.2 Let B denote an algorithm consisting of steps 1-4 of RecPrefix (the output of B
is the value z from Step 4). Consider the executions of B on S1 and on S2, and denote by Y1, S

′
1

and by Y2, S
′
2 the elements Y, S′ as they are in the executions on S1 and on S2.

We show that the distributions on the databases S′1 and S′2 are similar in the sense that for
each database in one of the distributions there exist a neighboring database in the other that have
the same probability. Thus, applying the recursion (which is differentially private by the inductive
assumption) preserves privacy. We now make this argument formal.

First note that as S1, S2 differ in only one element, there is a bijection between orderings Π
and Π̂ of the smallest (n− 2k) elements of S1 and of S2 respectively s.t. Y1 and Y2 are neighboring
databases. This is because there exists a permutation of the smallest (n−2k) elements of S1 that is
a neighbor of the smallest (n− 2k) elements of S2; composition with this fixed permutation yields
the desired bijection. Moreover, note that whenever Y1, Y2 are neighboring databases, the same is
true for S′1 and S′2. Hence, for every set of outputs F it holds that

2The recursion depth is determined by |X|, which is identical in S1 and in S2.

14

Pr[B(S) ∈ F] =
∑

Π

Pr[Π] · Pr[RecPrefix(S′1) ∈ F |Π]

≤ e2ε(t−1) ·
∑

Π

Pr[Π] · Pr[RecPrefix(S′2) ∈ F |Π̂] + 2δ(t− 1)

= e2ε(t−1) ·
∑

Π̂

Pr[Π̂] · Pr[RecPrefix(S′2) ∈ F |Π̂] + 2δ(t− 1)

= e2ε(t−1) · Pr[B(S′) ∈ F] + 2δ(t− 1)

So when executed for t recursive calls, the sequence of Steps 1-4 of RecPrefix is (2ε(t−1), 2δ(t−1))-
differentially private. On Steps 5 and 7, algorithm RecPrefix interacts with its database through the
choosing mechanism and using the Laplace mechanism, each of which is (ε, δ)-differentially private.
By composition (Lemma 2.2), we get that RecPrefix is (2tε, 2tδ)-differentially private.

Combining Lemma 3.11 and Lemma 3.13 we obtain Theorem 3.4.

3.3.3 Informal Discussion and Open Questions

An natural open problem is to close the gap between our (roughly) 2log∗ |X| upper bound on the sam-
ple complexity of privately solving the interior point problem (Theorem 3.4), and our log∗ |X| lower
bound (Theorem 3.2). Below we describe an idea for reducing the upper bound to poly(log∗ |X|).

In our recursive construction for the lower bound, we took n elements (x1, . . . , xn) and generated
n+ 1 elements where y0 is a random element (independent of the xi’s), and every xi is the length
of the longest common prefix of y0 and yi. Therefore, a change limited to one xi affects only
one yi and privacy is preserved (assuming that our future manipulations on (y0, . . . , yn) preserve
privacy). While the representation length of domain elements grows exponentially on every step,
the database size grows by 1. This resulted in the Ω(log∗ |X|) lower bound.

In RecPrefix on the other hand, every level of recursion shrank the database size by a factor
of 1

2 , and hence, we required a sample of (roughly) 2log∗ |X| elements. Specifically, in each level
of recursion, two input elements y2j−1, y2j were paired and a new element zj was defined as the
length of their longest common prefix. As with the lower bound, we wanted to ensure that a change
limited to one of the inputs affects only one new element, and hence, every input element is paired
only once, and the database size shrinks.

If we could pair input elements twice then the database size would only be reduced additively
(which will hopefully result in a poly(log∗ |X|) upper bound). However, this must be done carefully,
as we are at risk of deteriorating the privacy parameter ε by a factor of 2 and thus remaining with
an exponential dependency in log∗ |X|. Consider the following thought experiment for pairing
elements.

Input: (x1, . . . , xn) ∈ Xn.

1. Let (y0
1, . . . , y

0
n) denote a random permutation of (x1, . . . , xn).

2. For t = 1 to log∗ |X|:
For i = 1 to (n−t), let yti be the length of the longest common prefix of yt−1

i

and yt−1
i+1 .

15

As (most of the) elements are paired twice on every step, the database size reduces additively.
In addition, every input element xi affects at most t+ 1 elements at depth t, and the privacy loss is
acceptable. However, this still does not solve the problem. Recall that every iteration of RecPrefix
begins by randomly shuffling the inputs. Specifically, we needed to ensure that (w.h.p.) the number
of “close” pairs is limited. The reason was that if a “not close” pair agrees on a prefix L, then L is
the prefix “a lot” of other elements as well, and we could privately identify L. In the above process
we randomly shuffled only the elements at depth 0. Thus we do not know if the number of “close”
pairs is small at depth t > 0. On the other hand, if we changed the pairing procedure to shuffle at
every step, then each input element xi might affect 2t elements at depth t, causing the privacy loss
to deteriorate rapidly.

4 Query Release and Distribution Learning

4.1 Definitions

Recall that a counting query q is a predicate q : X → {0, 1}. For a database D = (x1, . . . , xn) ∈ Xn,
we write q(D) to denote the average value of q over the rows of D, i.e. q(D) = 1

n

∑n
i=1 q(xi). In

the query release problem, we seek differentially private algorithms that can output approximate
answers to a family of counting queries Q simultaneously.

Definition 4.1 (Query Release). Let Q be a collection of counting queries on a data universe
X, and let α, β > 0 be parameters. For a database D ∈ Xn, a sequence of answers {aq}q∈Q is
α-accurate for Q if |aq− q(D)| ≤ α for every q ∈ Q. An algorithm A : Xn → R|Q| is (α, β)-accurate
for Q if for every D ∈ Xn, the output A(D) is α-accurate for Q with probability at least 1−β over
the coins of A. The sample complexity of the algorithm A is the database size n.

We are interested in the query release problem for the class THRESHX of threshold queries, which
we view as a class of counting queries.

We are also interested in the following distribution learning problem, which is very closely
related to the query release problem.

Definition 4.2 (Distribution Learning with respect to Q). Let Q be a collection of counting queries
on a data universe X. Algorithm A is an (α, β)-accurate distribution learner with respect to Q with
sample complexity n if for all distributions D on X, given an input of n samples D = (x1, . . . , xn)
where each xi is drawn i.i.d. from D, algorithm A outputs a distribution D′ on X (specified by
its PMF) satisfying dQ(D,D′) , supq∈Q |Ex∼D[q(x)] − Ex∼D′ [q(x)]| ≤ α with probability at least
1− β.

We highlight two important special cases of the distance measure dQ in the distribution learning
problem. First, when Q is the collection of all counting queries on a domain X, the distance dQ is
the total variation distance between distributions, defined by

dTV(D,D′) , sup
S⊆X
| Pr
x∼D

[x ∈ S]− Pr
x∼D′

[x ∈ S]|.

Second, when X is a totally ordered domain and Q = THRESHX , the distance dQ is the Kolmogorov
(or CDF) distance. A distribution learner in the latter case may as well output a CDF that
approximates the target CDF in `∞ norm. Specifically, we define

16

Definition 4.3 (Cumulative Distribution Function (CDF)). Let D be a distribution over a totally
ordered domain X. The CDF FD of D is defined by FD(t) = Prx∼D[x ≤ t]. If X is finite, then any
function F : X → [0, 1] that is non-decreasing with F (maxX) = 1 is a CDF.

Definition 4.4 (Distribution Learning with respect to Kolmogorov distance). Algorithm A is an
(α, β)-accurate distribution learner with respect to Kolmogorov distance with sample complexity n if
for all distributions D on a totally ordered domain X, given an input of n samples D = (x1, . . . , xn)
where each xi is drawn i.i.d. from D, algorithm A outputs a CDF F with supx∈X |F (x) − FD(x)|
with probability at least 1− β.

The query release problem for a collection of counting queries Q is very closely related to the
distribution learning problem with respect to Q. In particular, solving the query release problem on
a dataset D amounts to learning the empirical distribution of D. Conversely, results in statistical
learning theory show that one can solve the distribution learning problem by first solving the
query release problem on a sufficiently large random sample, and then fitting a distribution to
approximately agree with the released answers. The requisite size of this sample (without privacy
considerations) is characterized by a combinatorial measure of the class Q called the VC dimension:

Definition 4.5. Let Q be a collection of queries over domain X. A set S = {x1, . . . , xk} ⊆ X
is shattered by Q if for every T ⊆ [k] there exists q ∈ Q such that T = {i : q(xi) = 1}. The
Vapnik-Chervonenkis (VC) dimension of Q, denoted VC(Q), is the cardinality of the largest set
S ⊆ X that is shattered by Q.

It is known [AB09] that solving the query release problem on 256 VC(Q) ln(48/αβ)/α2 random
samples yields an (α, β)-accurate distribution learner for a query class Q.

4.2 Equivalences with the Interior Point Problem

4.2.1 Private Release of Thresholds vs. the Interior Point Problem

We show that the problems of privately releasing thresholds and solving the interior point problem
are equivalent.

Theorem 4.6. Let X be a totally ordered domain. Then,

1. If there exists an (ε, δ)-differentially private algorithm that is able to release threshold queries
on X with (α, β)-accuracy and sample complexity n/(8α), then there is an (ε, δ)-differentially
private algorithm that solves the interior point problem on X with error β and sample com-
plexity n.

2. If there exists an (ε, δ)-differentially private algorithm solving the interior point problem on
X with error αβ/24 and sample complexity m, then there is a (5ε, (1 + eε)δ)-differentially
private algorithm for releasing threshold queries with (α, β)-accuracy and sample complexity

n = max

{
6m

α
,
25 log(24/β) log2.5(6/α)

αε

}
.

For the first direction, observe that an algorithm for releasing thresholds could easily be used
for solving the interior point problem. Formally,

17

Proof of Theorem 4.6 item 1. Suppose A is a private (α, β)-accurate algorithm for releasing thresh-
olds over X for databases of size n

8α . Define A′ on databases of size n to pad the database with an
equal number of min{X} and max{X} entries, and run A on the result. We can now return any
point t for which the approximate answer to the query ct is (1

2 ±α) on the (padded) database.

We now show the converse, i.e., that the problem of releasing thresholds can be reduced to the
interior point problem. Specifically, we reduce the problem to a combination of solving the interior
point problem, and of releasing thresholds on a much smaller data universe. The latter task is
handled by the following algorithm.

Lemma 4.7 ([DNPR10]). For every finite data universe X, and n ∈ N, ε, β > 0, there is an
ε-differentially private algorithm A that releases all threshold queries on X with (α, β)-accuracy for

α =
4 log(1/β) log2.5 |X|

εn
.

The idea of the reduction is to create noisy partitions of the input database into O(1/α) blocks
of size roughly αn/3. We then solve the interior point problem on each of these blocks, and think
of the results as representatives for each block. By answering threshold queries on just the set
of representatives, we can well-approximate all threshold queries. Moreover, since there are only
O(1/α) representatives, the base algorithm above gives only polylog(1/α) error for these answers.

In Appendix C, we describe another reduction that, up to constant factors, gives the same
sample complexity.

Proof of Theorem 4.6 item 2. Let R : X∗ → X be an (ε, δ)-differentially private algorithm solving
the interior point problem on X with error αβ/24 and sample complexity m. We may actually
assume that R is differentially private in the sense that if D ∈ X∗ and D′ differs from D up to the
addition or removal of a row, then for every S ⊆ X, Pr[R(D) ∈ S] ≤ eε Pr[R(D′) ∈ S] + δ, and
that R solves the interior point problem with probability at least 1− αβ/24 whenever its input is
of size at least m. This is because we can pad databases of size less than m with an arbitrary fixed
element, and subsample the first m entries from any database with size greater than m.

Consider the following algorithm for answering thresholds on databases D ∈ Xn for n > m:

18

Algorithm 4 Thresh(D)

Input: Database D = (x1, . . . , xn) ∈ Xn.

1. Sort D in nondecreasing order x1 ≤ x2 ≤ · · · ≤ xn.

2. Set k = 6/α and let t0 = 1, t1 = t0 +αn/3 + ν1, t2 = t1 +αn/3 + ν2 . . . , tk = tk−1 +αn/3 + νk
where each ν` ∼ Lap(1/ε) independently.

3. Divide D into blocks D1, . . . , Dk, where D` = (xt`−1
, . . . , xt`−1) (setting xj = maxX if j > n;

note some D` may be empty).

4. Let r0 = minX, r1 = R(D1), . . . , rk = R(Dk) and define D̂ from D by replacing each xj with
the largest r` for which r` ≤ xj .

5. Run algorithm A from Lemma 4.7 on D̂ over the universe {r0, r1, . . . , rk} to obtain threshold
query answers ar0 , ar1 , . . . , ark . Use privacy parameter ε and confidence parameter β/4.

6. Answer arbitrary threshold queries by interpolation, i.e. for r` ≤ t < r`+1, set at = ar` .

7. Output (at)t∈X .

Privacy Let D = (x1, . . . , xn) where x1 ≤ x2 ≤ · · · ≤ xn, and consider a neighboring database
D′ = (x1, . . . , x

′
i, . . . , xn). Assume without loss of generality that x′i ≥ xi+1, and suppose

x1 ≤ · · · ≤ xi−1 ≤ xi+1 ≤ · · · ≤ xj ≤ x′i ≤ xj+1 ≤ · · · ≤ xn.

We write vectors of noise values as ν = (ν1, ν2, . . . , νk). There is a bijection between noise vectors
ν and noise vectors ν ′ such that D partitioned according to ν and D′ partitioned according to ν ′

differ on at most two blocks: namely, if `, r are the indices for which t`−1 ≤ i < t` and tr−1 ≤ j < tr
(we may have ` = r), then we can take ν ′` = ν` − 1 and ν ′r = νr + 1 with ν ′ = ν at every other
index. Note that D partitioned into (D1, . . . , Dk) according to ν differs from D′ partitioned into
(D′1, . . . , D

′
k) according to ν ′ by a removal of an element from one block (namely D`) and the

addition of an element to another block (namely D′r). Thus, for every set S ⊆ Xm,

Pr[(R(D1), . . . , R(Dk)) ∈ S | ν] ≤ e2ε Pr[(R(D′1), . . . , R(D′k)) ∈ S | ν ′] + (1 + eε)δ.

Moreover, under the bijection we constructed between ν and ν ′, noise vector ν ′ is sampled with
density at most e2ε times the density of ν, so for every set S ⊆ Xm,

Pr[(R(D1), . . . , R(Dk)) ∈ S] ≤ e2ε(e2ε Pr[(R(D′1), . . . , R(D′k)) ∈ S]) + (1 + eε)δ

= e4ε Pr[(R(D′1), . . . , R(D′k)) ∈ S] + (1 + eε)δ.

Finally, the execution of A at the end of the algorithm is ε-differentially private, so by composition
(Lemma 2.2), we obtain the asserted level of privacy.

Utility We can produce α-accurate answers to every threshold function as long as

1. The partitioning exhausts the database, i.e. every element of D is in some Di,

19

2. Every execution of R succeeds at finding an interior point,

3. Every database Di has size at most 5αn/12 (ensuring that we have error at most 5α/6 from
interpolation),

4. The answers obtained from executing A all have error at most α/6.

We now estimate the probabilities of each event. For each i we have νi ≥ −αn/6 with probability
at least

1− exp(−αnε/6) ≥ 1− αβ/24.

So by a union bound, every νi is at least (−αn/6) with probability at least 1− β/4. If this is the
case, then item 1 holds because tk = k · αn/3 + ν1 + · · ·+ νk ≥ (6/α)(αn/3) + (6/α)(−αn/6) ≥ n.
Moreover, if every νi ≥ −αn/6, then item 2 also holds with probability at least 1 − β/4. This
is because every |Di| ≥ αn/3 − αn/6 ≥ m, and hence every execution of R on a subdatabase Di

succeeds with probability 1− αβ/24.
By a similar argument, property 3 holds as long as each noise value νi is at most αn/12, which

happens with probability at least 1−β/4. Finally, property 4 holds with probability at least 1−β/4
since

αn ≥ 24

ε
log(4/β) log2.5(1 + 6/α).

A union bound over the four properties completes the proof.

4.2.2 Releasing Thresholds vs. Distribution Learning

Query release and distribution learning are very similar tasks: A distribution learner can be viewed
as an algorithm for query release with small error w.r.t. the underlying distribution (rather than
the fixed input database). We show that the two tasks are equivalent under differential privacy.

Theorem 4.8. Let Q be a collection of counting queries over a domain X.

1. If there exists an (ε, δ)-differentially private algorithm for releasing Q with (α, β)-accuracy and
sample complexity n ≥ 256 VC(Q) ln(48/αβ)/α2, then there is an (ε, δ)-differentially private
(3α, 2β)-accurate distribution learner w.r.t. Q with sample complexity n.

2. If there exists an (ε, δ)-differentially private (α, β)-accurate distribution learner w.r.t. Q with
sample complexity n, then there is an (ε, δ)-differentially private query release algorithm for
Q with (α, β)-accuracy and sample complexity 9n.

The first direction follows from a standard generalization bound, showing that if a given database
D contains (enough) i.i.d. samples from a distribution D, then (w.h.p.) accuracy with respect to
D implies accuracy with respect to D. We remark that the sample complexity lower bound on n
required to apply item 1 of Theorem 4.8 does not substantially restrict its applicability: It is known
that an (ε, δ)-differentially private algorithm for releasing Q always requires sample complexity
Ω(VC(Q)/αε) anyway [BLR08].

Proof of Theorem 4.8, item 1. Suppose Ã is an (ε, δ)-differentially private algorithm for releasing
Q with (α, β)-accuracy and sample complexity n ≥ 256 VC(Q) ln(48/αβ)/α2. Fix a distribution D
over X and consider a database D containing n i.i.d. samples from D. Define the algorithm A that
on input D runs Ã on D to obtain answers aq for every query q ∈ Q. Afterwards, algorithm A

20

uses linear programming [DNR+09] to construct a distribution D′ that such that |aq − q(D′)| ≤ α
for every q ∈ Q, where q(D′) , Ex∼D′ [q(x)]. This reconstruction always succeeds as long as the
answers {aq} are α-accurate, since the empirical distribution of D is a feasible point for the linear
program. Note that A is (ε, δ)-differentially private (since it is obtained by post-processing Ã).

We first argue that q(D′) is close to q(D) for every q ∈ Q, and then argue that q(D) is close to
q(D). By the utility properties of Ã, with all but probability β,

|q(D′)− q(D)| ≤ |q(D′)− aq|+ |aq − q(D)| ≤ 2α.

for every q ∈ Q.
We now use the following generalization theorem to show that (w.h.p.) q(D) is close to q(D)

for every q ∈ Q.

Theorem 4.9 ([AB09]). Let Q be a collection of counting queries over a domain X. Let D =
(x1, . . . , xn) consist of i.i.d. samples from a distribution D over X. If d = VC(Q), then

Pr

[
sup
q∈Q
|q(D)− q(D)| > α

]
≤ 4

(
2en

d

)d
exp

(
−α

2n

8

)
.

Using the above theorem, together with the fact that n ≥ 256 VC(Q) ln(48/αβ)/α2, we see that
except with probability at least 1−β we have that |q(D)− q(D))| ≤ α for every q ∈ Q. By a union
bound (and the triangle inequality) we get that A is (3α, 2β)-accurate.

In the special case where Q = THRESHX for a totally ordered domain X, corresponding to distri-
bution learning under Kolmogorov distance, the above theorem holds as long as n ≥ 2 ln(2/β)/α2.
This follows from using the Dvoretzky-Kiefer-Wolfowitz inequality [DKW56, Mas90] in place of
Theorem 4.9.

Theorem 4.10. If there exists an (ε, δ)-differentially private algorithm for releasing THRESHX over
a totally ordered domain X with (α, β)-accuracy and sample complexity n ≥ 2 ln(2/β)/α2, then there
is an (ε, δ)-differentially private (2α, 2β)-accurate distribution learner under Kolmogorov distance
with sample complexity n.

We now show the other direction of the equivalence.

Lemma 4.11. Suppose A is an (ε, δ)-differentially private and (α, β)-accurate distribution learner
w.r.t. a concept class Q with sample complexity n. Then there is an (ε, δ)-differentially private
algorithm Ã for releasing Q with (α, β)-accuracy and sample complexity 9n.

To construct the algorithm Ã, we note that a distribution learner must perform well on the
uniform distribution on the rows of any fixed database, and thus must be useful for releasing
accurate answers for queries on such a database. Thus if we have a distribution learner A, the
mechanism Ã that samples m rows (with replacement) from its input database D ∈ (X × {0, 1})n
and runs A on the result should output accurate answers for queries with respect to D. The random
sampling has two competing effects on privacy. On one hand, the possibility that an individual
is sampled multiple times incurs additional privacy loss. On the other hand, if n > m, then a
“secrecy-of-the-sample” argument shows that random sampling actually improves privacy, since
any individual is unlikely to have their data affect the computation at all. We show that if n is
only a constant factor larger than m, these two effects offset, and the resulting mechanism is still
differentially private.

21

Proof. Consider a databaseD ∈ X9n. LetD denote the uniform distribution over the rows ofD, and
let D′ be the distribution learned. Consider the algorithm Ã that subsamples (with replacement) n
rows from D and runs A on it to obtain a distribution D′. Afterwards, algorithm Ã answers every
threshold query q ∈ Q with aq = q(D′) , Ex∼D′ [q(x)].

Note that drawing n i.i.d. samples from D is equivalent to subsampling n rows of D (with
replacement). Then with probability at least 1− β, the distribution D′ returned by A is such that
for every x ∈ X

|q(D′)− q(D)| = |q(D′)− q(D)| ≤ α,

showing that Ã is (α, β)-accurate.

We’ll now use a secrecy-of-the-sample argument (refining an argument that appeared implicitly
in [KLN+11]), to show that Ã (from Lemma 4.11) is differentially private wheneverA is differentially
private.

Lemma 4.12. Fix ε ≤ 1 and let A be an (ε, δ)-differentially private algorithm operating on
databases of size m. For n ≥ 2m, construct an algorithm Ã that on input a database D of size n sub-
samples (with replacement) m rows from D and runs A on the result. Then Ã is (ε̃, δ̃)-differentially
private for

ε̃ = 6εm/n and δ̃ = exp(6εm/n)
4m

n
· δ.

Proof. Let D,D′ be adjacent databases of size n, and suppose without loss of generality that they
differ on the last row. Let T be a random variable denoting the multiset of indices sampled by
Ã, and let `(T) be the multiplicity of index n in T . Fix a subset S of the range of Ã. For each
k = 0, 1, . . . ,m let

pk = Pr[`(T) = k] =

(
m

k

)
n−k(1− 1/n)m−k =

(
m

k

)
(n− 1)−k(1− 1/n)m,

qk = Pr[A(D|T) ∈ S|`(T) = k],

q′k = Pr[A(D′|T) ∈ S|`(T) = k].

Here, D|T denotes the subsample of D consisting of the indices in T , and similarly for D′|T . Note
that q0 = q′0, since D|T = D′|T if index n is not sampled. Our goal is to show that

Pr[Ã(D) ∈ S] =
m∑
k=0

pkqk ≤ eε̃
m∑
k=0

pkq
′
k + δ̃ = eε̃ Pr[Ã(D′) ∈ S] + δ̃.

To do this, observe that by privacy, qk ≤ eεqk−1 + δ, so

qk ≤ ekεq0 +
ekε − 1

eε − 1
δ.

22

Hence,

Pr[Ã(D) ∈ S] =
m∑
k=0

pkqk

≤
m∑
k=0

(
m

k

)
(n− 1)−k(1− 1/n)m

(
ekεq0 +

ekε − 1

eε − 1
δ

)

= q0(1− 1/n)m
m∑
k=0

(
m

k

)(
eε

n− 1

)k
+

δ

eε − 1
(1− 1/n)m

m∑
k=0

(
m

k

)(
eε

n− 1

)k
− δ

eε − 1

= q0(1− 1/n)m
(

1 +
eε

n− 1

)m
+

δ

eε − 1
(1− 1/n)m

(
1 +

eε

n− 1

)m
− δ

eε − 1

= q0

(
1− 1

n
+
eε

n

)m
+

(
1− 1

n + eε

n

)m − 1

eε − 1
δ. (1)

Similarly, we also have that

Pr[Ã(D′) ∈ S] ≥ q0

(
1− 1

n
+
e−ε

n

)m
−

(
1− 1

n + e−ε

n

)m
− 1

e−ε − 1
δ. (2)

Combining inequalities 1 and 2 we get that

Pr[Ã(D) ∈ S] ≤

(
1− 1

n + eε

n

1− 1
n + e−ε

n

)m
·

Pr[Ã(D′) ∈ S] +
1−

(
1− 1

n + e−ε

n

)m
1− e−ε

δ

+

(
1− 1

n + eε

n

)m − 1

eε − 1
δ,

proving that A′ is (ε̃, δ̃)-differentially private for

ε̃ ≤ m · ln

(
1 + eε−1

n

1 + e−ε−1
n

)
≤ 6εm

n

and

δ̃ ≤ exp(6εm/n)
1−

(
1 + e−ε−1

n

)m
1− e−ε

· δ +

(
1 + eε−1

n

)m − 1

eε − 1
· δ

≤ exp(6εm/n)
1− exp

(
2 e
−ε−1
n/m

)
1− e−ε

· δ +
exp

(
eε−1
n/m

)
− 1

eε − 1
· δ

≤ exp(6εm/n)
2m

n
· δ +

2m

n
· δ

≤ exp(6εm/n)
4m

n
· δ.

23

5 PAC Learning

5.1 Definitions

A concept c : X → {0, 1} is a predicate that labels examples taken from the domain X. A concept
class C over X is a set of concepts over the domain X. A learner is given examples sampled from
an unknown probability distribution D over X that are labeled according to an unknown target
concept c ∈ C and outputs a hypothesis h that approximates the target concept with respect to
the distribution D. More precisely,

Definition 5.1. The generalization error of a hypothesis h : X → {0, 1} (with respect to a target
concept c and distribution D) is defined by errorD(c, h) = Prx∼D[h(x) 6= c(x)]. If errorD(c, h) ≤ α
we say that h is an α-good hypothesis for c on D.

Definition 5.2 (PAC Learning [Val84]). Algorithm A is an (α, β)-accurate PAC learner for a con-
cept class C over X using hypothesis class H with sample complexity m if for all target concepts
c ∈ C and all distributions D on X, given an input of m samples D = ((xi, c(xi)), . . . , (xm, c(xm))),
where each xi is drawn i.i.d. fromD, algorithmA outputs a hypothesis h ∈ H satisfying Pr[errorD(c, h) ≤
α] ≥ 1− β.

The probability is taken over the random choice of the examples in D and the coin tosses of
the learner A. If H ⊆ C then A is called proper, otherwise, it is called improper.

Definition 5.3. The empirical error of a hypothesis h on a labeled sample S = ((x1, `1), . . . , (xm, `m))
is errorS(h) = 1

m |{i : h(xi) 6= `i}|. If errorS(h) ≤ α we say h is α-consistent with S.

Classical results in statistical learning theory show that a sample of size Θ(VC(C)) is both
necessary and sufficient for PAC learning a concept class C. That O(VC(C)) samples suffice
follows from a “generalization” argument: for any concept c and distribution D, with probability
at least 1 − β over m > Oα,β(VC(C)) random labeled examples, every concept h ∈ C that agrees
with c on the examples has error at most α on D. Therefore, C can be properly learned by finding
any hypothesis h ∈ C that agrees with the given examples.

Recall the class of threshold functions, which are concepts defined over a totally ordered domain
X by THRESHX = {cx : x ∈ X} where cx(y) = 1 iff y ≤ x. The class of threshold functions has VC
dimension VC(THRESHX) = 1, and hence can be learned with Oα,β(1) samples.

A private learner is a PAC learner that is differentially private. Following [KLN+11], we consider
algorithms A : (X × {0, 1})m → H, where H is a hypothesis class, and require that

1. A is an (α, β)-accurate PAC learner for a concept class C with sample complexity m, and

2. A is (ε, δ)-differentially private.

Note that while we require utility (PAC learning) to hold only when the database D consists
of random labeled examples from a distribution, the requirement of differential privacy applies to
every pair of neighboring databases D ∼ D′, including those that do not correspond to examples
labeled by any concept.

Recall the relationship between distribution learning and releasing thresholds, where accuracy
is measured w.r.t. the underlying distribution in the former and w.r.t. the fixed input database in
the later. Analogously, we now define the notion of an empirical learner which is similar to a PAC
learner where accuracy is measured w.r.t. the fixed input database.

24

Definition 5.4 (Empirical Learner). Algorithm A is an (α, β)-accurate empirical learner for a
concept class C over X using hypothesis class H with sample complexity m if for every c ∈ C
and for every database D = ((xi, c(xi)), . . . , (xm, c(xm))) ∈ (X × {0, 1})m algorithm A outputs a
hypothesis h ∈ H satisfying Pr[errorD(c, h) ≤ α] ≥ 1− β.

The probability is taken over the coin tosses of A.

Note that without privacy (and ignoring computational efficiency) identifying a hypothesis with
small empirical error is trivial for every concept class C and for every database of size at least 1.
This is not the case with (ε, δ)-differential privacy,3 and the sample complexity of every empirical
learner for a concept class C is at least Ω(VC(C)):

Theorem 5.5. For every α, β ≤ 1/8, every δ ≤ 1
8n and ε > 0, if A is an (ε, δ)-differentially private

(α, β)-accurate empirical learner for a class C with sample complexity n, then n = Ω
(

1
αε VC(C)

)
.

The proof of Theorem 5.5 is very similar the analysis of [BLR08] for lower bounding the sample
complexity of releasing approximated answers for queries in the class C. As we will see in the next
section, at least in some cases (namely, for threshold functions) the sample complexity must also
have some dependency in the size of the domain X.

Proof of Theorem 5.5. Fix d < VC(C), let x0, x1, x2, . . . , xd be shattered by C, and denote S =
{x1, . . . , xd}. Let D denote a database containing (1− 8α)n copies of x0 and 8αn/d copies of every
xi ∈ S. For a concept c we use Dc to denote the database D labeled by c. We will consider concepts
that label x0 as 0, and label exactly half of the elements in S as 1. To that end, initiate C̃ = ∅,
and for every subset S′ ⊆ S of size |S′| = |S|/2, add to C̃ one concept c ∈ C s.t. c(x0) = 0 and for
every xi ∈ S it holds that c(xi) = 1 iff xi ∈ S′ (such a concept exists since S ∪ {x0} is shattered by
C).

Now, let c ∈ C̃ be chosen uniformly at random, let x ∈ S be a random element s.t. c(x) = 1,
and let y ∈ S be a random element s.t. c(y) = 0. Also let c′ ∈ C̃ be s.t. c′(x) = 0, c′(y) = 1, and
c′(xi) = c(xi) for every xi ∈ S \ {x, y}. Note that the marginal distributions on c and on c′ are
identical, and denote h = A(Dc) and h′ = A(Dc′).

Observe that x is a random element of S that is labeled as 1 in Dc, and that an α-consistent
hypothesis for Dc must label at least (1− 1

8)d such elements as 1. Hence, by the utility properties
of A, we have that

Pr[h(x) = 1] ≥ (1− β)(1− 1/8) ≥ 3/4.

Similarly, x is a random elements of S that is labeled as 0 in Dc′ , and an α-consistent hypothesis
for Dc′ must not label more than d/8 such elements as 1. Hence,

Pr[h′(x) = 1] ≤ β + (1− β)
1

8
≤ 1/4.

Finally, as Dc and Dc′ differ in at most 16αn/d entries, differential privacy ensures that

3/4 ≤ Pr[h(x) = 1] ≤ e16αεn/d · Pr[h′(x) = 1] + e16αεn/d · 16αnδ/d ≤ e16αεn/d · 1/2,

showing that n ≥ d
40αε .

3The lower bound in Theorem 5.5 also holds for label private empirical learners, that are only required to provide
privacy for the labels in the database.

25

5.2 Private Learning of Thresholds vs. the Interior Point Problem

We show that with differential privacy, there is a Θ(1/α) multiplicative relationship between the
sample complexities of properly PAC learning thresholds with (α, β)-accuracy and of solving the
interior point problem with error probability Θ(β). Specifically, we show

Theorem 5.6. Let X be a totally ordered domain. Then,

1. If there exists an (ε, δ)-differentially private algorithm solving the interior point problem
on X with error probability β and sample complexity n, then there is a (2ε, (1 + eε)δ)-
differentially private (2α, 2β)-accurate proper PAC learner for THRESHX with sample com-

plexity max
{
n
2α ,

4 log(2/β)
α

}
.

2. If there exists an (ε, δ)-differentially private (α, β)-accurate proper PAC learner for THRESHX
with sample complexity n, then there is a (2ε, (1 + eε)δ)-differentially private algorithm that
solves the interior point problem on X with error β and sample complexity 27αn.

We show this equivalence in two phases. In the first, we show a Θ(1/α) relationship between the
sample complexity of solving the interior point problem and the sample complexity of empirically
learning thresholds. We then use generalization and resampling arguments to show that with
privacy, this latter task is equivalent to learning with samples from a distribution.

Lemma 5.7. Let X be a totally ordered domain. Then,

1. If there exists an (ε, δ)-differentially private algorithm solving the interior point problem on X
with error probability β and sample complexity n, then there is a (2ε, (1 + eε)δ)-differentially
private algorithm for properly and empirically learning thresholds with (α, β)-accuracy and
sample complexity n/(2α).

2. If there exists an (ε, δ)-differentially private algorithm that is able to properly and empirically
learn thresholds on X with (α, β)-accuracy and sample complexity n/(3α), then there is a
(2ε, (1+eε)δ)-differentially private algorithm that solves the interior point problem on X with
error β and sample complexity n.

Proof. For the first direction, let A be a private algorithm for the interior point problem on
databases of size n. Consider the algorithm A′ that, on input a database D of size n/(2α), runs A′
on a database D′ consisting of the largest n/2 elements of D that are labeled 1 and the smallest
n/2 elements of D that are labeled 0. If there are not enough of either such element, pad D′ with
min{X}’s or max{X}’s respectively. Note that if x is an interior point of D′ then cx is a threshold

function with error at most n/2
n/(2α) on D, and is hence α-consistent with D. For privacy, note that

changing one row of D changes at most two rows of D′. Hence, applying algorithm A preserves
(2ε, (eε + 1)δ)-differential privacy.

For the reverse direction, suppose A′ privately finds an α-consistent threshold functions for
databases of size n/(3α). Define A on a database D′ ∈ Xn to label the smaller n/2 points 1 and
the larger n/2 points 0 to obtain a labeled database D ∈ (X×{0, 1})n, pad D with an equal number
of (min{X}, 1) and (max{X}, 0) entries to make it of size n/(3α), and run A′ on the result. Note
that if cx is a threshold function with error at most α on D then x is an interior point of D′, as
otherwise cx has error at least n/2

n/(3α) > α on D. For privacy, note that changing one row of D′

changes at most two rows of D. Hence, applying algorithm A′ preserves (2ε, (eε + 1)δ)-differential
privacy.

26

Now we show that the task of privately outputting an almost consistent hypothesis on any
fixed database is essentially equivalent to the task of private (proper) PAC learning. One direction
follows immediately from a standard generalization bound for learning thresholds:

Lemma 5.8. Any algorithm A for empirically learning THRESHX with (α, β)-accuracy is also a
(2α, β + β′)-accurate PAC learner for THRESHX when given at least max{n, 4 ln(2/β′)/α} samples.

Proof. Let D be a distribution over a totally ordered domain X and fix a target concept c =
qx ∈ THRESHX . It suffices to show that for a sample S = ((xi, c(xi)), . . . (xm, c(xm))) where m ≥
4 ln(2/β′)/α and the xi are drawn i.i.d. from D, it holds that

Pr [∃ h ∈ C : errorD(h, c) > 2α ∧ errorS(h) ≤ α] ≤ β′.

Let x− ≤ x be the largest point with errorD(qx− , c) ≥ 2α. If some y ≤ x has errorD(qy, c) ≥ 2α
then y ≤ x−, and hence for any sample S, errorS(qx−) ≤ errorS(qy). Similarly let x+ ≥ x be the
smallest point with errorD(qx+ , c) ≥ 2α. Let c− = qx− and c+ = qx+ . Then it suffices to show that

Pr
[
errorS(c−) ≤ α ∨ errorS(c+) ≤ α

]
≤ β′.

Concentrating first on c−, we define the error region R− = (x−, x] ∩ X as the interval where c−

disagrees with c. By a Chernoff bound, the probability that after m independent samples from D,
fewer than αm appear in R− is at most exp(−αm/4) ≤ β′/2. The same argument holds for c+, so
the result follows by a union bound.

In general, an algorithm that can output an α-consistent hypothesis from concept class C can also
be used to learn C using max{n, 64 VC(C) log(512/αβ′)/α} samples [BEHW89]. The concept class
of thresholds has VC dimension 1, so the generalization bound for thresholds saves an O(log(1/α))
factor over the generic statement.

For the other direction, we note that a distribution-free learner must perform well on the uniform
distribution on the rows of any fixed database, and thus must be useful for outputting a consistent
hypothesis on such a database.

Lemma 5.9. Suppose A is an (ε, δ)-differentially private (α, β)-accurate PAC learner for a concept
class C with sample complexity m. Then there is an (ε, δ)-differentially private (α, β)-accurate
empirical learner for C with sample complexity n = 9m. Moreover, if A is proper, then so is the
resulting empirical learner.

Proof. Consider a database D = {(xi, yi)} ∈ (X × {0, 1})n. Let D denote the uniform distribution
over the rows of D. Then drawing m i.i.d. samples from D is equivalent to subsampling m rows
of D (with replacement). Consider the algorithm Ã that subsamples (with replacement) m rows
from D and runs A on it. Then with probability at least 1 − β, algorithm A outputs an α-good
hypothesis on D, which is in turn an α-consistent hypothesis for D. Moreover, by Lemma 4.12
(secrecy-of-the-sample), algorithm A is (ε, δ)-differentially private.

6 Thresholds in High Dimension

We next show that the bound of Ω(log∗ |X|) on the sample complexity of private proper-learners
for THRESHX extends to conjunctions of ` independent threshold functions in ` dimensions. As we

27

will see, every private proper-learner for this class requires a sample of Ω(` · log∗ |X|) elements.
This also yields a similar lower bound for the task of query release, as in general an algorithm for
query release can be used to construct a private learner.

The significance of this lower bound is twofold. First, for reasonable settings of parameters
(e.g. δ is negligible and items in X are of polynomial bit length in n), our Ω(log∗ |X|) lower bound
for threshold functions is dominated by the dependence on log(1/δ) in the upper bound. However,
` · log∗ |X| can still be much larger than log(1/δ), even when δ is negligible in the bit length of
items in X`. Second, the lower bound for threshold functions only yields a separation between the
sample complexities of private and non-private learning for a class of VC dimension 1. Since the
concept class of `-dimensional thresholds has VC dimension of `, we obtain an ω(VC(C)) lower
bound for concept classes even with arbitrarily large VC dimension.

Consider the following extension of THRESHX to ` dimensions.

Definition 6.1. For a totally ordered set X and ~a = (a1, . . . , a`) ∈ X` define the concept c~a :
X` → {0, 1} where c~a(~x) = 1 if and only if for every 1 ≤ i ≤ ` it holds that xi ≤ ai. Define the
concept class of all thresholds over X` as THRESH`X = {c~a}~a∈X` .

Note that the VC dimension of THRESH`X is `. We obtain the following lower bound on the
sample complexity of privately learning THRESH`X .

Theorem 6.2. For every n, ` ∈ N, α > 0, and δ ≤ `2/(1500n2), any (ε = 1
2 , δ)-differentially private

and (α, β = 1
8)-accurate proper learner for THRESH`X requires sample complexity n = Ω(`α log∗ |X|).

This is the result of a general hardness amplification theorem for private proper learning. We
show that if privately learning a concept class C requires sample complexity n, then learning the
class C` of conjunctions of ` different concepts from C requires sample complexity Ω(`n).

Definition 6.3. For ` ∈ N, a data universe X and a concept class C over X, define a concept
class C` over X` to consist of all ~c = (c1, . . . , c`), where ~c : X` → {0, 1} is defined by ~c(~x) =
c1(x1) ∧ c2(x2) ∧ · · · ∧ c`(x`).

Theorem 6.4. Let α, β, ε, δ > 0. Let C be a concept class over a data universe X, and assume
there is a domain element p1 ∈ X s.t. c(p1) = 1 for every c ∈ C. Let D be a distribution over
databases containing n examples from X labeled by a concept in C, and suppose that every (ε, δ)-
differentially private algorithm fails to find an (α/β)-consistent hypothesis h ∈ C for D ∼ D with
probability at least 2β. Then any (ε, δ)-differentially private and (α, β)-accurate proper learner for
C` requires sample complexity Ω(`n).

Note that in the the above theorem we assumed the existence of a domain element p1 ∈ X on
which every concept in C evaluates to 1. To justify the necessity of such an assumption, consider
the class of point functions over a domain X defined as POINTX = {cx : x ∈ X} where cx(y) = 1
iff y = x. As was shown in [BNS13b], this class can be privately learned using Oα,β,ε,δ(1) labeled
examples (i.e., the sample complexity has no dependency in |X|). Observe that since there is no
x ∈ X on which every point concept evaluates to 1, we cannot use Theorem 6.4 to lower bound
the sample complexity of privately learning POINT`X . Indeed, the class POINT`X is identical (up to
renaming of domain elements) to the class POINTX`, and can be privately learned using Oα,β,ε,δ(1)
labeled examples.

28

Remark 6.5. Similarly to Theorem 6.4 it can be shown that if privately learning a concept class C
requires sample complexity n, and if there exists a domain element p0 ∈ X s.t. c(p0) = 0 for every
c ∈ C, then learning the class of disjunctions of ` concepts from C requires sample complexity `n.

Proof of Theorem 6.4. Assume toward a contradiction that there exists an (ε, δ)-differentially pri-
vate and (α, β)-accurate proper learner A for C` using `n/9 samples. Recall that the task of
privately outputting a good hypothesis on any fixed database is essentially equivalent to the task of
private PAC learning (See Section 5.2). We can assume, therefore, that A outputs an α-consistent
hypothesis for every fixed database of size at least n′ , `n with probability at least 1− β.

We construct an algorithm SolveD which uses A in order to find an (α/β)-consistent threshold
function for databases of size n from D. Algorithm SolveD takes as input a set of n labeled examples
in X and applies A on a database containing n′ labeled examples in X`. The n input points are
embedded along one random axis, and random samples from D are placed on each of the other axes
(with n labeled points along each axis).

Algorithm 5 SolveD
Input: Database D = (xi, yi)

n
i=1 ∈ (X × {0, 1})n.

1. Initiate S as an empty multiset.

2. Let r be a (uniform) random element from {1, 2, . . . , `}.

3. For i = 1 to n, let ~zi ∈ X` be the vector with rth coordinate xi, and all other coordinates
p1 (recall that every concept in C evaluates to 1 on p1). Add to S the labeled example
(~zi, yi).

4. For every axis t 6= r:

(a) Let D′ = (x′i, y
′
i)
n
i=1 ∈ (X × {0, 1})n denote a (fresh) sample from D.

(b) For i = 1 to n, let ~z′i ∈ X` be the vector whose tth coordinate is x′i, and its other

coordinates are p1. Add to S the labeled example (~z′i, y
′
i).

5. Let (h1, h2, . . . , h`) = ~h← A(S).

6. Return hr.

First observe that SolveD is (ε, δ)-differentially private. To see this, note that a change limited
to one input entry affects only one entry of the multiset S. Hence, applying the (ε, δ)-differentially
private algorithm A on S preserves privacy.

Consider the execution of SolveD on a database D of size n, sampled from D. We first argue
that A is applied on a multiset S correctly labeled by a concept from C`. For 1 ≤ t ≤ ` let

(xti, y
t
i)
n
i=1 be the sample from D generated for the axis t, let (~zti , y

t
i)
n
i=1 denote the corresponding

elements that were added to S, and let ct be s.t. ct(x
t
i) = yti for every 1 ≤ i ≤ n. Now observe that

(c1, c2, . . . , c`)(
~zti) = c1(p1) ∧ c2(p1) ∧ · · · ∧ ct(xti) ∧ · · · ∧ c`(p1) = yti ,

and hence S is perfectly labeled by (c1, c2, . . . , c`) ∈ C`.
By the properties of A, with probability at least 1 − β we have that ~h (from Step 5) is an

α-consistent hypothesis for S. Assuming that this is the case, there could be at most β` “bad”

29

axes on which ~h errs on more than αn/β points. Moreover, as r is a random axis, and as the points
along the rth axis are distributed exactly like the points along the other axes, the probability that
r is a “bad” axis is at most β`

` = β. Overall, SolveD outputs an (α/β)-consistent hypothesis with
probability at least (1− β)2 > 1− 2β. This contradicts the hardness of the distribution D.

Now the proof of Theorem 6.2 follows from the lower bound on the sample complexity of
privately finding an α-consistent threshold function (see Section 3.2):

Lemma 6.6 (Follows from Lemma 3.3 and 5.7). There exists a constant λ > 0 s.t. the follow-
ing holds. For every totally ordered data universe X there exists a distribution D over databases
containing at most n = λ

α log∗ |X| labeled examples from X such that every (1
2 ,

1
50n2)-differentially

private algorithm fails to find an α-consistent threshold function for D ∼ D with probability at least
1
4 .

We remark that, in general, an algorithm for query release can be used to construct a private
learner with similar sample complexity. Hence, Theorem 6.2 also yields the following lower bound
on the sample complexity of releasing approximated answers to queries from THRESH`X .

Theorem 6.7. For every n, ` ∈ N, α > 0, and δ ≤ `2/(7500n2), any (1
150 , δ)-differentially private

algorithm for releasing approximated answers for queries from THRESH`X with (α, 1
150)-accuracy must

have sample complexity n = Ω(`α log∗ |X|).

In order to prove the above theorem we use our lower bound on privately learning THRESH`X
together with the following reduction from private learning to query release.

Lemma 6.8 ([GHRU11, BNS13b]). Let C be a class of predicates. If there exists a (1
150 , δ)-

differentially private algorithm capable of releasing queries from C with (1
150 ,

1
150)-accuracy and

sample complexity n, then there exists a (1
5 , 5δ)-differentially private (1

5 ,
1
5)-accurate PAC learner

for C with sample complexity O(n).

Proof of Theorem 6.7. Let δ ≤ `2/(7500n2). Combining our lower bound on the sample complexity
of privately learning THRESH`X (Theorem 6.2) together with the reduction stated in Lemma 6.8, we
get a lower bound of m , Ω(` · log∗ |X|) on the sample complexity of every (1

150 , δ)-differentially
private algorithm for releasing queries from THRESH`X with (1

150 ,
1

150)-accuracy.
In order to refine this argument and get a bound that incorporates the approximation parameter,

let α ≤ 1/150, and assume towards contradiction that there exists a (1
150 , δ)-differentially private

algorithm Ã for releasing queries from THRESH`X with (α, 1
150)-accuracy and sample complexity

n < m/(150α).
We will derive a contradiction by using Ã in order to construct a (1

150 ,
1

150)-accurate algorithm
for releasing queries from THRESH`X with sample complexity less than m. Consider the algorithm
A that on input a database D of size 150αn, applies Ã on a database D̃ containing the elements
in D together with (1 − 150α)n copies of (minX). Afterwards, algorithm A answers every query
c ∈ THRESH`X with ac , 1

150α(ãc − 1 + 150α), where {ãc} are the answers received from Ã.

Note that as Ã is (1
150 , δ)-differentially private, so is A. We now show that A’s output is 1

150 -

accurate for D whenever Ã’s output is α-accurate for D̃, which happens with all but probability
1

150 . Fix a query c ∈ THRESH`X and assume that c(D) = t/(150αn). Note that c(minX) = 1, and

30

hence, c(D̃) = t/n+ (1− 150α). By the utility properties of Ã,

ac =
1

150α
(ãc − 1 + 150α)

≤ 1

150α
(c(D̃) + α− 1 + 150α)

=
1

150α
(t/n+ α)

= t/(150αn) + 1/150

= c(D) + 1/150.

Similar arguments show that ac ≥ c(D) − 1/150, proving that A is (1/150, 1/150)-accurate and
contradicting the lower bound on the sample complexity of such algorithms.

7 Mechanism-Dependent Lower Bounds

7.1 The Undominated Point Problem

By a reduction to the interior point problem problem, we can prove an impossibility result for
the problem of privately outputting something that is at least the minimum of a database on an
unbounded domain. Specifically, we show

Theorem 7.1. For every (infinite) totally ordered domain X with no maximum element (e.g.,
X = N) and every n ∈ N, there is no (ε, δ)-differentially private mechanism M : Xn → X such
that for every x = (x1, . . . , xn) ∈ Xn,

Pr[M(x) ≥ min
i
xi] ≥ 2/3.

Besides being a natural relaxation of the interior point problem, this undominated point problem
is of interest because we require new techniques to obtain lower bounds against it. Note that if
we ask for a mechanism that works over a bounded domain (e.g., [0, 1]), then the problem is
trivial. Moreover, this means that proving a lower bound on the problem when the domain is N
cannot possibly go by way of constructing a single distribution that every differentially private
mechanism fails on. The reason is that for any distribution D over Nn, there is some number K
where PrD←RD[maxD > K] ≤ 2/3, so the mechanism that always outputs K solves the problem.

Proof. Without loss of generality we may take X = N, since every totally ordered domain with
no maximum element contains an infinite sequence x0 < x1 < x2 < x3 < To prove our lower
bound we need to take advantage of the fact that we only need to show that for each differentially
private mechanism M there exists a distribution, depending on M , over which M fails. To this
end, for an increasing function T : N→ N, we say that a mechanism M : Nn → N is “T -bounded”
if Pr[M(x1, . . . , xn) ≥ T (maxi xi)] < 1/8. That is, M is T -bounded if it is unlikely to output
anything larger than T applied to the max of its input. Note that any mechanism is T -bounded
for some function T .

We can then reduce the impossibility of the undominated point problem for T -bounded mech-
anisms to our lower bound for the interior point problem. First, fix a function T . Suppose for the
sake of contradiction that there were a T -bounded mechanism M that solves the undominated point

31

problem on (x1, . . . , xn) with probability at least 7/8. Then by a union bound, M must output
something in the interval [mini xi, T (maxi xi)) with probability at least 3/4. Now, for d ∈ N, con-
sider the data universe Xd = {1, T (1), T (T (1)), T (T (T (1))), . . . , T (d−1)(1)} and the differentially
private mechanism M ′ : Xn

d → Xd that, on input a database D runs M(D) and rounds the answer
down to the nearest T i(d). Then M ′ solves the interior point problem on the domain Xd with
probability at least 3/4. By our lower bound for the interior point problem we have n = Ω(log∗ d),
which is a contradiction since n is fixed and d is arbitrary.

7.2 Properly Learning Point Functions with Pure Differential Privacy

Using similar ideas as in the above section, we revisit the problem of privately learning the concept
class POINTN of point functions over the natural numbers. Recall that a point function cx is
defined by cx(y) = 1 if x = y and evaluates to 0 otherwise. Beimel et al. [BKN10] used a
packing argument to show that POINTN cannot be properly learned with pure ε-differential privacy
(i.e., δ=0). However, more recent work of Beimel et al. [BNS13a] exhibited an ε-differentially
private improper learner for POINTN with sample complexity O(1). Their construction required
an uncountable hypothesis class, with each concept being described by a real number. This left
open the question of whether POINTN could be learned with a countable hypothesis class, with each
concept having a finite description length.

We resolve this question in the negative. Specifically, we show that it is impossible to learn
(even improperly) point functions over an infinite domain with pure differential privacy using a
countable hypothesis class.

Theorem 7.2. Let X be an infinite domain, let H be a countable collection of hypotheses {h : X →
{0, 1}}, and let ε ≥ 0. Then there is no ε-differentially private (1/3, 1/3)-accurate PAC learner for
points over X using the hypothesis class H.

Remark 7.3. A learner implemented by an algorithm (i.e. a probabilistic Turing machine) must
use a hypothesis class where each hypothesis has a finite description. Note that the standard proper
learner for POINTX can be implemented by an algorithm. However, a consequence of our result is
that there is no algorithm for privately learning POINTX .

Proof. For clarity, and without loss of generality, we assume that X = N. Suppose for the sake
of contradiction that we had an ε-differentially private learner M for point functions over N using
hypothesis class H. Since H is countable, there is a finite subset of hypotheses H ′ such that
M((0, 1)n) ∈ H ′ with probability at least 5/6, where (0, 1)n is the dataset where all examples are
the point 0 with the label 1. Indeed

∑
h∈H Pr[M((0, 1)n) = h] = 1, so some finite partial sum of

this series is at least 5/6. Now to each point x ∈ N we will associate a distribution Dx on N and
let Gx ⊆ H ′ be the set of hypotheses h in the finite set H ′ for which

Pr
y∼Dx

[cx(y) = h(y)] ≥ 2/3.

We establish the following claim.

Claim 7.4. There is an infinite sequence of points x1, x2, x3, . . . together with distributions Di :=
Dxi such that the sets Gi := Gxi are all disjoint.

32

Given the claim, the result follows by a packing argument [HT10, BKN10]. By the utility of
M , for each Di there is a database Ri ∈ (N× {0, 1})n in the support of Dni such that Pr[M(Ri) ∈
Gi] ≥ 2/3 − 1/6 = 1/2. By changing the database Ri to (0, 1)n one row at a time while applying
the differential privacy constraint, we see that

Pr[M((0, 1)n) ∈ Gi] ≥
1

2
e−εn.

It is impossible for this to hold for infinitely many disjoint sets Gi.

Proof of Claim 7.4. We inductively construct the sequence (xi), starting with x1 = 0. Now suppose
we have constructed x1, . . . , xi with corresponding good hypothesis setsG1, . . . , Gi. LetB = ∪ij=1Gi
be the set of hypotheses with wish to avoid. Note that B is a finite set of hypotheses, so there are
some x, x′ ∈ N for which every h ∈ B with h(x) = 1 also has h(x′) = 1. Let xi+1 = x and Di be
distributed uniformly over x and x′. Then for every hypothesis h ∈ B,

Pr
y∼Di

[cxi+1(y) = h(y)] ≤ 1/2,

and hence Gi+1 is disjoint from the preceding Gj ’s.

Acknowledgments. We thank Amos Beimel, Adam Smith, Jonathan Ullman, and anonymous
reviewers for helpful conversations and suggestions that helped guide our work. We also thank
Gautam Kamath for pointing us to references on distribution learning.

References

[AB09] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Founda-
tions. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[BDKT12] Aditya Bhaskara, Daniel Dadush, Ravishankar Krishnaswamy, and Kunal Talwar. Un-
conditional differentially private mechanisms for linear queries. In Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pages 1269–
1284, New York, NY, USA, 2012. ACM.

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy:
the SuLQ framework. In Chen Li, editor, PODS, pages 128–138. ACM, 2005.

[BEHW89] Anselm Blumer, A. Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnabil-
ity and the Vapnik-Chervonenkis dimension. J. ACM, 36(4):929–965, October 1989.

[BKN10] Amos Beimel, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the sample
complexity for private learning and private data release. In TCC, pages 437–454, 2010.

[BLR08] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-
interactive database privacy. In Cynthia Dwork, editor, STOC, pages 609–618. ACM,
2008.

[BNS13a] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Characterizing the sample complexity
of private learners. In Robert D. Kleinberg, editor, ITCS, pages 97–110. ACM, 2013.

33

[BNS13b] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: Pure
vs. approximate differential privacy. In Prasad Raghavendra, Sofya Raskhodnikova,
Klaus Jansen, and José D. P. Rolim, editors, APPROX-RANDOM, volume 8096 of
Lecture Notes in Computer Science, pages 363–378. Springer, 2013.

[BS98] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. IEEE
Transactions on Information Theory, 44(5):1897–1905, 1998.

[BST14] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimiza-
tion, revisited. CoRR, abs/1405.7085, 2014.

[BUV14] Mark Bun, Jonathan Ullman, and Salil P. Vadhan. Fingerprinting codes and the price
of approximate differential privacy. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 1–10, 2014.

[DDS+13] Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio, Gregory Valiant, and
Paul Valiant. Testing k -modal distributions: Optimal algorithms via reductions. In Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1833–1852, 2013.

[DDS14] Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A. Servedio. Learning k -modal
distributions via testing. Theory of Computing, 10:535–570, 2014.

[De12] Anindya De. Lower bounds in differential privacy. In TCC, pages 321–338, 2012.

[DK14] Constantinos Daskalakis and Gautam Kamath. Faster and sample near-optimal al-
gorithms for proper learning mixtures of gaussians. In Proceedings of The 27th Con-
ference on Learning Theory, COLT 2014, Barcelona, Spain, June 13-15, 2014, pages
1183–1213, 2014.

[DKW56] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample
distribution function and of the classical multinomial estimator. Ann. Math. Statist.,
27(3):642–669, 09 1956.

[DL09] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages
371–380, New York, NY, USA, 2009. ACM.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, TCC,
volume 3876 of Lecture Notes in Computer Science, pages 265–284. Springer, 2006.

[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In PODS,
pages 202–210. ACM, 2003.

[DN04] Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically parti-
tioned databases. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture
Notes in Computer Science, pages 528–544. Springer, 2004.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential
privacy under continual observation. In STOC, pages 715–724, 2010.

34

[DNR+09] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vad-
han. On the complexity of differentially private data release: efficient algorithms and
hardness results. In Michael Mitzenmacher, editor, STOC, pages 381–390. ACM, 2009.

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential
privacy. In FOCS, pages 51–60. IEEE Computer Society, 2010.

[DTTZ14] Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss:
Optimal bounds for privacy-preserving principal component analysis. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing, STOC ’14, pages 11–20,
New York, NY, USA, 2014. ACM.

[EHKV89] Andrzej Ehrenfeucht, David Haussler, Michael J. Kearns, and Leslie G. Valiant. A
general lower bound on the number of examples needed for learning. Inf. Comput.,
82(3):247–261, 1989.

[FX14] Vitaly Feldman and David Xiao. Sample complexity bounds on differentially private
learning via communication complexity. CoRR, abs/1402.6278, 2014.

[GHRU11] Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan Ullman. Privately releasing
conjunctions and the statistical query barrier. In Lance Fortnow and Salil P. Vadhan,
editors, STOC, pages 803–812. ACM, 2011.

[HR10] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In FOCS, pages 61–70. IEEE Computer Society, 2010.

[HT10] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In STOC,
pages 705–714, 2010.

[KLN+11] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova,
and Adam Smith. What can we learn privately? SIAM J. Comput., 40(3):793–826,
2011.

[Mas90] P. Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. Ann.
Probab., 18(3):1269–1283, 07 1990.

[MN12] S. Muthukrishnan and Aleksandar Nikolov. Optimal private halfspace counting via
discrepancy. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of
Computing, STOC ’12, pages 1285–1292, New York, NY, USA, 2012. ACM.

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’07, pages 94–103, Washington, DC, USA, 2007. IEEE Computer Society.

[NTZ13] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy:
the sparse and approximate cases. In STOC, pages 351–360, 2013.

[RR14] Omer Reingold and Guy Rothblum. Personal communication, May 2014.

[Val84] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, November
1984.

35

[VC71] Vladimir N. Vapnik and Alexey Y. Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability and its Ap-
plications, 16(2):264–280, 1971.

A The Choosing Mechanism

We supply the proofs of privacy and utility for the choosing mechanism.

Proof of Lemma 3.6. Let A denote the choosing mechanism (Algorithm 2). Let S, S′ be neighboring
databases of m elements. We need to show that Pr[A(S) ∈ R] ≤ exp(ε) · Pr[A(S′) ∈ R] + δ for
every set of outputs R ⊆ F ∪ {⊥}. Note first that OPT(S) = maxf∈F{q(S, f)} has sensitivity at
most 1, so by the properties of the Laplace Mechanism,

Pr[A(S) = ⊥] = Pr

[
ÕPT(S) <

8

ε
ln(

4k

βεδ
)

]
≤ exp(

ε

4
) · Pr

[
ÕPT(S′) <

8

ε
ln(

4k

βεδ
)

]
= exp(

ε

4
) · Pr[A(S′) = ⊥]. (3)

Similarly, we have Pr[A(S) 6= ⊥] ≤ exp(ε/4) Pr[A(S′) 6= ⊥]. Thus, we my assume below that
⊥ 6∈ R. (If ⊥ ∈ R, then we can write Pr[A(S) ∈ R] = Pr[A(S) = ⊥] + Pr[A(S) ∈ R \ {⊥}], and
similarly for S′.)

Case (a): OPT(S) < 4
ε ln(4k

βεδ). It holds that

Pr[A(S) ∈ R] ≤ Pr[A(S) 6= ⊥]

≤ Pr

[
Lap

(
4

ε

)
>

4

ε
ln

(
4k

βεδ

)]
≤ δ ≤ Pr[A(S′) ∈ R] + δ.

Case (b): OPT(S) ≥ 4
ε ln(4k

βεδ). Let G(S) and G(S′) be the sets used in step 2 in the execution

S and on S′ respectively. We will show that the following two facts hold:

Fact 1 : For every f ∈ G(S) \G(S′), it holds that Pr[A(S) = f] ≤ δ
k .

Fact 2 : For every possible output f ∈ G(S)∩G(S′), it holds that Pr[A(S) = f] ≤ eε ·Pr[A(S′) = f].

We first show that the two facts imply that the lemma holds for Case (b). Let B , G(S)\G(S′),
and note that as q is of k-bounded growth, |B| ≤ k. Using the above two facts, for every set of

36

outputs R ⊆ F we have

Pr[A(S) ∈ R] = Pr[A(S) ∈ R \B] +
∑

f∈R∩B
Pr[A(S) = f]

≤ eε · Pr[A(S′) ∈ R \B] + |R ∩B| δ
k

≤ eε · Pr[A(S′) ∈ R] + δ.

To prove Fact 1, let f ∈ G(S)\G(S′). That is, q(S, f) ≥ 1 and q(S′, f) = 0. As q has sensitivity
at most 1, it must be that q(S, f) = 1. As there exists f̂ ∈ S with q(S, f̂) ≥ 4

ε ln(4k
βεδ), we have that

Pr[A(S) = f] ≤ Pr

[
The exponential

mechanism chooses f

]
≤

exp(ε4 · 1)

exp(ε4 ·
4
ε ln(4k

βεδ))
= exp

(ε
4

) βεδ
4k

,

which is at most δ/k for ε ≤ 2.
To prove Fact 2, let f ∈ G(S) ∩ G(S′) be a possible output of A(S). We use the following

Fact 3, proved below.

Fact 3 :
∑

h∈G(S′)

exp(ε4q(S
′, h)) ≤ eε/2 ·

∑
h∈G(S)

exp(ε4q(S, h)).

Using Fact 3, for every possible output f ∈ G(S) ∩G(S′) we have that

Pr[A(S) = f]

Pr[A(S′) = f]

=

(
Pr[A(S) 6= ⊥] ·

exp(ε4q(f, S))∑
h∈G(S) exp(ε4q(h, S))

)/(
Pr[A(S′) 6= ⊥] ·

exp(ε4q(f, S
′))∑

h∈G(S′) exp(ε4q(h, S
′))

)

=
Pr[A(S) 6= ⊥]

Pr[A(S′) 6= ⊥]
·

exp(ε4q(f, S))

exp(ε4q(f, S
′))
·
∑

h∈G(S′) exp(ε4q(h, S
′))∑

h∈G(S) exp(ε4q(h, S))
≤ e

ε
4 · e

ε
4 · e

ε
2 = eε.

We now prove Fact 3. Let X ,
∑

h∈G(S) exp(ε4q(S, h)). Since there exists a solution f̂ s.t.

q(S, f̂) ≥ 4
ε ln(4k

βεδ), we have X ≥ exp(ε4 ·
4
ε ln(4k

βεδ)) ≥ 4k
ε .

Now, recall that q is of k-bounded growth, so |G(S′) \G(S)| ≤ k, and every h ∈ (G(S′) \G(S))
satisfies q(S′, h) = 1. Hence,∑

h∈G(S′)

exp
(ε

4
q(S′, h)

)
≤ k · exp

(ε
4

)
+

∑
h∈G(S′)∩G(S)

exp
(ε

4
q(S′, h)

)
≤ k · exp

(ε
4

)
+ exp

(ε
4

)
·

∑
h∈G(S′)∩G(S)

exp
(ε

4
q(S, h)

)
≤ k · exp

(ε
4

)
+ exp

(ε
4

)
·
∑

h∈G(S)

exp
(ε

4
q(S, h)

)
= k · eε/4 + eε/4 · X ≤ eε/2X ,

where the last inequality follows from the fact that X ≥ 4k/ε. This concludes the proof of Fact 3,
and completes the proof of the lemma.

37

The utility analysis for the choosing mechanism is rather straightforward:

Proof of Lemma 3.7. Recall that the mechanism defines ÕPT(S) as OPT(S) + Lap(4
ε). Note that

the mechanism succeeds whenever ÕPT(S) ≥ 8
ε ln(4k

βεδ). This happens provided the Lap
(

4
ε

)
random

variable is at most 8
ε ln(4k

βεδ), which happens with probability at least (1− β).

Proof of Lemma 3.8. Note that if OPT(S) < 16
ε ln(4km

βεδ), then every solution is a good output,
and the mechanism cannot fail. Assume, therefore, that there exists a solution f s.t. q(f, S) ≥
16
ε ln(4km

βεδ), and recall that the mechanism defines ÕPT(S) as OPT(S)+Lap(4
ε). As in the proof of

Lemma 3.7, with probability at least 1− β/2, we have ÕPT(S) ≥ 8
ε ln

(
4k
βεδ

)
. Assuming this event

occurs, we will show that with probability at least 1 − β/2, the exponential mechanism chooses a
solution f s.t. q(S, f) ≥ opt(S)− 16

ε ln(4km
βεδ).

By the growth-boundedness of q, and as S is of size m, there are at most km possible solutions
f with q(S, f) > 0. That is, |G(S)| ≤ km. By the properties of the Exponential Mechanism, we
obtain a solution as desired with probability at least(

1− km · exp

(
− ε

4
· 16

ε
ln

(
4km

βεδ

)))
≥
(

1− β

2

)
.

By a union bound, we get that the choosing mechanism outputs a good solution with probability
at least (1− β).

B Interior Point Fingerprinting Codes

Fingerprinting codes were introduced by Boneh and Shaw [BS98] to address the problem of wa-
termarking digital content. Suppose a content distributor wishes to distribute a piece of digital
content to n legitimate users in such a way that any pirated copy of that content can be traced back
to any user who helped in producing the copy. A fingerprinting code is a scheme for assigning each
n users a codeword that can be hidden in their copy of the content, and then be uniquely traced
back to the identity of that user. Informally, a finger printing code is fully collusion-resistant if
when an arbitrary coalition T of users combine their codewords to produce a new pirate codeword
the pirate codeword can still be successfully traced to a member of T , provided the pirate codeword
satisfies a certain marking assumption. Traditionally, this marking assumption requires that if all
users in T see the same bit b at index j of their codewords, then index j of their combined codeword
must also be b.

Recent work has shown how to use fingerprinting codes to obtain lower bounds in differential
privacy [BUV14, DTTZ14, BST14]. Roughly speaking, these works show how any algorithm with
nontrivial accuracy for a given task can be used to create a pirate algorithm that satisfies the
marking assumption for a fingerprinting code. The security of the fingerprinting code means that
the output of this algorithm can be traced back to one of its inputs. This implies that the algorithm
is not differentially private.

We show how our lower bound for privately solving the interior point problem can also be
proved by the construction of an object we call an interior point fingerprinting code. The difference
between this object and a traditional fingerprinting code lies in the marking assumption. Thinking
of our codewords as being from an ordered domain X, our marking assumption is that the codeword

38

produced by a set of T users must be an interior point of their codewords. The full definition of
the code is as follows.

Definition B.1. For a totally ordered domain X, an interior point fingerprinting code over X
consists of a pair of randomized algorithms (Gen,Trace) with the following syntax.

• Genn samples a codebook C = (x1, . . . , xn) ∈ Xn

• Tracen(x) takes as input a “codeword” x ∈ X and outputs either a user i ∈ [n] or a failure
symbol ⊥.

The algorithms Gen and Trace are allowed to share a common state (e.g. their random coin tosses).
The adversary to a fingerprinting code consists of a subset T ⊆ [n] of users and a pirate

algorithm A : X |T | → X. The algorithm A is given C|T , i.e. the codewords xi for i ∈ T , and its
output x ←R A(C|T) is said to be “feasible” if x ∈ [mini∈T xi,maxi∈T xi]. The security guarantee
of a fingerprinting code is that for all coalitions T ⊆ [n] and all pirate algorithms A, if x = A(C|T),
then we have

1. Completeness: Pr[Trace(x) = ⊥ ∧ x feasible] ≤ γ, where γ ∈ [0, 1] is the completeness error.

2. Soundness: Pr[Trace(x) ∈ [n] \ T] ≤ ξ, where ξ ∈ [0, 1] is the soundness error.

The probabilities in both cases are taken over the coins of Gen,Trace, and A.

Remark B.2. We note that an interior point fingerprinting code could also be interpreted as an
ordinary fingerprinting code (using the traditional marking assumption) with codewords of length
|X| of the form 000011111. As an example for using such a code, consider a vendor interested
in fingerprinting movies. Using an interior point fingerprinting code, the vendor could produce
fingerprinted copies by simply splicing two versions of the movie.

We now argue as in [BUV14] that the existence of an interior point fingerprinting code yields a
lower bound for privately solving the interior point problem.

Lemma B.3. Let ε ≤ 1, δ ≤ 1/(12n), γ ≤ 1/2 and ξ ≤ 1/(33n). If there is an interior point
fingerprinting code on domain X for n users with completeness error γ and soundness error ξ,
then there is no (ε, δ)-differentially private algorithm that, with probability at least 2/3, solves the
interior point problem on X for databases of size n− 1.

Proof. Suppose for the sake of contradiction that there were a differentially private A for solving
the interior point problem on Xn−1. Let T = [n−1], and let x = A(C|T) for a codebook C ←R Gen.

1− γ ≤ Pr[Trace(x) 6= ⊥ ∨ x not feasible] ≤ Pr[Trace(x) 6= ⊥] +
1

3
.

Therefore, there exists some i∗ ∈ [n] such that

Pr[Trace(x) = i∗] ≥ 1

n
·
(

2

3
− γ
)
≥ 1

6n
.

Now consider the coalition T ′ obtained by replacing user i∗ with user n. Let x′ = A(C|T ′), again
for a random codebook C ←R Gen. Since A is differentially private,

Pr[Trace(x′) = i∗] ≥ e−ε · (Pr[Trace(x) = i∗]− δ) > 1

33n
≥ ξ,

contradicting the soundness of the interior point fingerprinting code.

39

We now show how to construct an interior point fingerprinting code, using similar ideas as in
the proof of Lemma 3.3. For n users, the codewords lie in a domain with size an exponential tower
in n, allowing us to recover the log∗ |X| lower bound for interior point queries.

Lemma B.4. For every n ∈ N and ξ > 0 there is an interior point fingerprinting code for n users
with completeness γ = 0 and soundness ξ on a domain Xn of size |Xn| ≤ tower(n+log∗(2n2/ξ))(1).

Proof. Let b(n) = 2n2/ξ, and define the function S recursively by S(1) = 1 and S(n+1) = b(n)S(n).
By induction on n, we will construct codes for n users over a domain of size S(n) with perfect
completeness and soundness at most

∑n
j=1

1
b(j) < ξ. First note that there is a code with perfect

completeness and perfect soundness for n = 1 user over a domain of size S(1) = 1. Suppose we
have defined the behavior of (Genn,Tracen) for n users. Then we define

• Genn+1 samples C ′ = (x′1, . . . , x
′
n) ←R Genn and xn+1 ←R [S(n + 1)]. For each i = 1, . . . , n,

let xi be a base-b(n) number (written x
(0)
i x

(1)
i . . . x

(S(n)−1)
i , where x

(0)
i is the most significant

digit) that agrees with xn+1 in the x′i most-significant digits, and has random entries from
[b(n)] at every index thereafter. The output codebook is C = (x1, . . . , xn+1).

• Tracen+1(x) retrieves the codebook C from its shared state with Genn+1. Let M be the
maximum number of digits to which any xi (for i = 1, . . . , n) agrees with xn+1. If x agrees
with xn+1 on more than M digits, accuse user n+1. Otherwise, let x′ be the number of indices
on which x agrees with xn+1, and run Tracen(x′) with respect to codebook C ′ = (x′1, . . . , x

′
n).

We reduce the security of this scheme to that of (Genn,Tracen). To check completeness, let T ⊆
[n+ 1] be a pirate coalition and let A be a pirate algorithm. Consider the pirate algorithm A′ for
codes on n users that, given a set of codewords C ′|T ′ where T ′ = T \ {n+ 1}, simulates Genn+1 to
produce a set of codewords C|T and outputs the number x′ of indices on which x = A(C|T) agrees
with xn+1.

If x is feasible for C|T and xM+1 6= xM+1
n+1 , then x′ is feasible for C ′|T ′ . Therefore,

Pr[Tracen+1(x) = ⊥ ∧ x feasible for C|T] = Pr[xM+1 6= xM+1
n+1 ∧ Tracen(x′) = ⊥ ∧ x feasible for C|T]

≤ Pr[Tracen(x′) = ⊥ ∧ x′ feasible for C ′|T ′] = 0,

by induction, proving perfect completeness.
To prove soundness, let M ′ = maxx′i. Then

Pr[Tracen+1(x) ∈ [n+ 1] \ T] ≤ Pr[Tracen+1(x) = n+ 1 ∧ (n+ 1) /∈ T] + Pr[Tracen+1(x) ∈ [n] \ T]

≤ Pr[xM
′+1 = xM

′+1
n+1 ∧ (n+ 1) /∈ T] + Pr[Tracen(x′) ∈ [n] \ T]

≤ 1

b(n)
+

n−1∑
j=1

1

b(j)
=

n∑
j=1

1

b(j)
< ξ.

Combining Lemmas B.3 and B.4 yields Theorem 1.8.

40

C Another Reduction from Releasing Thresholds to the Interior
Point Problem

We give a somewhat different reduction showing that solving the interior point problem enables
us to α-accurately release thresholds with a polylog(1/α)/α blowup in sample complexity. It gives
qualitatively the same parameters as Algorithm Thresh used to prove Theorem 4.6, but we believe
the ideas used for this reduction may be useful in the design of other differentially private algorithms.

This reduction computes approximate (α/3)-quantiles of its input, which can then be used to
release thresholds with α-accuracy. To do so, it uses the strategy of [DNPR10] of using a complete
binary tree to generate a sequence of k = 3/α noise values. The tree has k leaves and depth log k,
and at each node in the tree we sample a Laplace random variable. The noise value corresponding
to a leaf is the sum of the samples along the path from that leaf to the root.

We take the sorted input database and divide it into equal-size blocks around the k (α/3)-
quantiles, and perturb the boundaries of the blocks by the k noise values. Solving the interior point
problem on these buckets then gives approximate (α/3)-quantiles. Moreover, the noisy bucketing
step ensures that the final algorithm is differentially private.

We formally describe this algorithm as Thresh2 below. Let R be an (ε, δ)-differentially private
mechanism for solving the interior point problem on X that succeeds with probability at least
1− αβ/6 on databases of size m. In the algorithm below, let P (i) denote the set of prefixes of the
binary representation of i (including the empty prefix).

Algorithm 6 Thresh2(D)

Input: Database D = (x1, . . . , xn) ∈ Xn

1. Sort D in nondecreasing order

2. Let k = 3/α be a power of 2

3. For each s ∈ {0, 1}` with 0 ≤ ` ≤ log k, sample νs ∼ Lap((log k)/2ε)

4. For each i = 1, . . . , k, let ηi =
∑

s∈P (i) νs

5. Let T0 = αn/6, T1 = αn/2 + η1, . . . , Tk−2 = αn/6 + α(k − 2)n/3 + ηk−1, Tk−1 = n− αn/6

6. Divide D into blocks D1, . . . , Dk−1, where Di = (xTi−1 , . . . , xTi−1) (note Di may be empty)

7. Release R(D1), . . . , R(Dm), interpreted as approximate (α/3)-quantiles.

We will show that this algorithm satisfies (3ε, (1 + eε)δ)-differential privacy, and is able to
release approximate k(= 3/α)-quantiles with (α/3, β)-accuracy, and hence (α, β)-accurate answers
to threshold queries, as long as

n ≥ max

{
6m

α
,
99 log2.5(1/α)

αε

}

41

Privacy Let D = (x1, . . . , xn) where x1 ≤ x2 ≤ · · · ≤ xn, and let D′ = (x1, . . . , x
′
i, . . . , xn).

Assume without loss of generality that x′i ≥ xi+1, and suppose

x1 ≤ · · · ≤ xi−1 ≤ xi+1 ≤ · · · ≤ xj ≤ x′i ≤ xj+1 ≤ · · · ≤ xn.

Consider vectors of noise values ν = (ν1, ν2, . . . , νm). Then there is a bijection between noise vectors
ν and noise vectors ν ′ such that D partitioned according to ν and D′ partitioned according to ν ′

differ on at most 2 blocks (cf. [DNPR10]). Moreover, this bijection changes at most 2 logm values
νs by at most 1. Thus under this mapping, noise vector ν ′ is sampled with probability at most eε

times the probability ν is sampled. We get that for any set S,

Pr[(M(D1), . . . ,M(Dm)) ∈ S] ≤ eε(e2ε Pr[(M(D′1), . . . ,M(D′m)) ∈ S]) + (1 + eε)δ

= e3ε Pr[(M(D′1), . . . ,M(D′m)) ∈ S] + (1 + eε)δ.

Utility We can produce (α/3)-accurate estimates of every quantile as long as

1. Every noise value has magnitude at most αn/3

2. Every execution of R succeeds

By the analysis of Lemma 4.7 in [DNPR10], with probability at least 1 − β/2, every noise value
ηi is bounded by 11 log2.5(1/α)/ε ≤ αn/12. This suffices to achieve item 1. Moreover, conditioned
on the noise values being so bounded, each |Di| ≥ αn/6 ≥ m, so each execution of R individually
succeeds with probability 1−αβ/6. Hence they all succeed simultaneously with probability at least
1− β/2, giving item 2.

42

	1 Introduction
	1.1 Differential Privacy
	1.2 Private Query Release
	1.3 Private Distribution Learning
	1.4 Private PAC Learning
	1.5 Techniques

	2 Preliminaries
	2.1 Differential Privacy

	3 The Interior Point Problem
	3.1 Definition
	3.2 Lower Bound
	3.3 Upper Bound
	3.3.1 The exponential and choosing mechanisms
	3.3.2 The RecPrefix algorithm
	3.3.3 Informal Discussion and Open Questions

	4 Query Release and Distribution Learning
	4.1 Definitions
	4.2 Equivalences with the Interior Point Problem
	4.2.1 Private Release of Thresholds vs. the Interior Point Problem
	4.2.2 Releasing Thresholds vs. Distribution Learning

	5 PAC Learning
	5.1 Definitions
	5.2 Private Learning of Thresholds vs. the Interior Point Problem

	6 Thresholds in High Dimension
	7 Mechanism-Dependent Lower Bounds
	7.1 The Undominated Point Problem
	7.2 Properly Learning Point Functions with Pure Differential Privacy

	A The Choosing Mechanism
	B Interior Point Fingerprinting Codes
	C Another Reduction from Releasing Thresholds to the Interior Point Problem

