
ar
X

iv
:1

20
5.

17
58

v2
  [

cs
.D

S]
  2

5 
Ju

n 
20

12

Faster Algorithms for Privately

Releasing Marginals∗

Justin Thaler† Jonathan Ullman‡

Salil Vadhan§

School of Engineering and Applied Sciences &

Center for Research on Computation and Society

Harvard University, Cambridge, MA

{jthaler,jullman,salil}@seas.harvard.edu

June 26, 2012

Abstract

We study the problem of releasing k-way marginals of a database D ∈ ({0, 1}d)n, while
preserving differential privacy. The answer to a k-way marginal query is the fraction of D’s
records x ∈ {0, 1}d with a given value in each of a given set of up to k columns. Marginal
queries enable a rich class of statistical analyses of a dataset, and designing efficient algorithms
for privately releasing marginal queries has been identified as an important open problem in
private data analysis (cf. Barak et. al., PODS ’07).

We give an algorithm that runs in time dO(
√

k) and releases a private summary capable
of answering any k-way marginal query with at most ±.01 error on every query as long as

n ≥ dO(
√

k). To our knowledge, ours is the first algorithm capable of privately releasing marginal
queries with non-trivial worst-case accuracy guarantees in time substantially smaller than the
number of k-way marginal queries, which is dΘ(k) (for k ≪ d).

1 Introduction

Consider a database D ∈ ({0, 1}d)n in which each of the n = |D| rows corresponds to an individual’s
record, and each record consists of d binary attributes. The goal of privacy-preserving data analysis
is to enable rich statistical analyses on the database while protecting the privacy of the individuals.
In this work, we seek to achieve differential privacy [6], which guarantees that no individual’s data
has a significant influence on the information released about the database.

∗An extended abstract of this work appears in ICALP ’12 [22].
†http://seas.harvard.edu/~jthaler. Supported by the Department of Defense (DoD) through the National

Defense Science & Engineering Graduate Fellowship (NDSEG) Program, and in part by NSF grants CCF-0915922
and IIS-0964473.

‡http://seas.harvard.edu/~jullman. Supported by NSF grant CNS-0831289 and a gift from Google, Inc.
§http://seas.harvard.edu/~salil. Supported by NSF grant CNS-0831289 and a gift from Google, Inc.

1

http://arxiv.org/abs/1205.1758v2
http://seas.harvard.edu/~jthaler
http://seas.harvard.edu/~jullman
http://seas.harvard.edu/~salil


One of the most important classes of statistics on a dataset is its marginals. A marginal query
is specified by a set S ⊆ [d] and a pattern t ∈ {0, 1}|S|. The query asks, “What fraction of
the individual records in D has each of the attributes j ∈ S set to tj?” A major open problem
in privacy-preserving data analysis is to efficiently create a differentially private summary of the
database that enables analysts to answer each of the 3d marginal queries. A natural subclass of
marginals are k-way marginals, the subset of marginals specified by sets S ⊆ [d] such that |S| ≤ k.

Privately answering marginal queries is a special case of the more general problem of privately
answering counting queries on the database, which are queries of the form, “What fraction of
individual records in D satisfy some property q?” Early work in differential privacy [5, 2, 6] showed
how to approximately answer any set of of counting queries Q by perturbing the answers with
appropriately calibrated noise, providing good accuracy (say, within ±.01 of the true answer) as
long as |D| & |Q|1/2.

In a setting where the queries arrive online, or are known in advance, it may be reasonable
to assume that |D| & |Q|1/2. However, many situations necessitate a non-interactive data release,
where the data owner computes and publishes a single differentially private summary of the database
that enables analysts to answer a large class of queries, say all k-way marginals for a suitable
choice of k. In this case |Q| = dΘ(k), and it may be impractical to collect enough data to ensure
|D| & |Q|1/2. Fortunately, the remarkable work of Blum et. al. [3] and subsequent refinements [7,
9, 19, 14, 13, 12], have shown how to privately release approximate answers to any set of counting
queries, even when |Q| is exponentially larger than |D|. For example, these algorithms can release
all k-way marginals as long as |D| ≥ Θ̃(k

√
d). Unfortunately, all of these algorithms have running

time at least 2d, even when |Q| is the set of 2-way marginals (and this is inherent for algorithms
that produce “synthetic data” [23]; as discussed below).

Given this state of affairs, it is natural to seek efficient algorithms capable of privately releasing
approximate answers to marginal queries even when |D| ≪ dk. A recent series of works [11, 4, 15]
have shown how to privately release answers to k-way marginal queries with small average error
(over various distributions on the queries) with both running time and minimum database size much

smaller than dk (e.g. dO(1) for product distributions [11, 4] and min{dO(
√
k), dO(d1/3)} for arbitrary

distributions [15]). Hardt et. al. [15] also gave an algorithm for privately releasing k-way marginal
queries with small worst-case error and minimum database size much smaller than dk. However
the running time of their algorithm is still dΘ(k), which is polynomial in the number of queries.

In this paper, we give the first algorithms capable of releasing k-way marginals up to small
worst-case error, with both running time and minimum database size substantially smaller than

dk. Specifically, we show how to create a private summary in time dO(
√
k) that gives approximate

answers to all k-way marginals as long as |D| is at least dO(
√
k). When k = d, our algorithm runs

in time 2Õ(
√
d), and is the first algorithm for releasing all marginals in time 2o(d).

1.1 Our Results and Techniques

In this paper, we give faster algorithms for releasing marginals and other classes of counting queries.

Theorem 1.1 (Releasing Marginals). There exists a constant C such that for every k, d, n ∈ N

with k ≤ d, every α ∈ (0, 1], and every ε > 0, there is an ε-differentially private sanitizer that,

on input a database D ∈ ({0, 1}d)n, runs in time |D| · dC
√
k log(1/α) and releases a summary that

enables computing each of the k-way marginal queries on D up to an additive error of at most α,

provided that |D| ≥ dC
√
k log(1/α)/ε.

2



For notational convenience, we focus on monotone k-way disjunction queries. However, our re-
sults extend straightforwardly to general non-monotone k-way disjunction queries (see Section 4.1),
which are equivalent to k-way marginals. A monotone k-way disjunction is specified by a set S ⊆ [d]
of size k and asks what fraction of records in D have at least one of the attributes in S set to 1.

Our algorithm is inspired by a series of works reducing the problem of private query release to
various problems in learning theory. One ingredient in this line of work is a shift in perspective
introduced by Gupta, Hardt, Roth, and Ullman [11]. Instead of viewing disjunction queries as a
set of functions on the database, they view the database as a function fD : {0, 1}d → [0, 1], in which
each vector s ∈ {0, 1}d is interpreted as the indicator vector of a set S ⊆ [d], and fD(s) equals
the evaluation of the disjunction specified by S on the database D. They use the structure of the
functions fD to privately learn an approximation gD that has small average error over any product
distribution on disjunctions.1

Cheraghchi, Klivans, Kothari, and Lee [4] observed that the functions fD can be approximated
by a low-degree polynomial with small average error over the uniform distribution on disjunctions.
They then use a private learning algorithm for low-degree polynomials to release an approximation
to fD; and thereby obtain an improved dependence on the accuracy parameter, as compared to [11].

Hardt, Rothblum, and Servedio [15] observe that fD is itself an average of disjunctions (each
row of D specifies a disjunction of bits in the indicator vector s ∈ {0, 1}d of the query), and thus
develop private learning algorithms for threshold of sums of disjunctions. These learning algorithms
are also based on low-degree approximations of sums of disjunctions. They show how to use their
private learning algorithms to obtain a sanitizer with small average error over arbitrary distributions

with running time and minimum database size dO(
√
k). They then are able to apply the private

boosting technique of Dwork, Rothblum, and Vadhan [9] to obtain worst-case accuracy guarantees.
Unfortunately, the boosting step incurs a blowup of dk in the running time.

We improve the above results by showing how to directly compute (a noisy version of) a poly-
nomial pD that is privacy-preserving and still approximates fD on all k-way disjunctions, as long
as |D| is sufficiently large. Specifically, the running time and the database size requirement of

our algorithm are both polynomial in the number of monomials in pD, which is dO(
√
k). By “di-

rectly”, we mean that we compute pD from the database D itself and perturb its coefficients, rather
than using a learning algorithm. Our construction of the polynomial pD uses the same low-degree
approximations exploited by Hardt et. al. in the development of their private learning algorithms.

In summary, the main difference between prior work and ours is that prior work used learning
algorithms that have restricted access to the database, and released the hypothesis output by the
learning algorithm. In contrast, we do not make use of any learning algorithms, and give our release
algorithm direct access to the database. This enables our algorithm to achieve a worst-case error
guarantee while maintaining a minimal database size and running time much smaller than the size
of the query set. Our algorithm is also substantially simpler than that of Hardt et. al.

We also consider other families of counting queries. We define the class of r-of-k queries. Like
a monotone k-way disjunction, an r-of-k query is defined by a set S ⊆ [d] such that |S| ≤ k. The
query asks what fraction of the rows of D have at least r of the attributes in S set to 1. For r = 1,
these queries are exactly monotone k-way disjunctions, and r-of-k queries are a strict generalization.

Theorem 1.2 (Releasing r-of-k Queries). For every r, k, d, n ∈ N with r ≤ k ≤ d, every α ∈ (0, 1],
and every ε > 0 there is an ε-differentially private sanitizer that, on input a database D ∈ ({0, 1}d)n,

1In their learning algorithm, privacy is defined with respect to the rows of the database D that defines fD, not
with respect to the examples given to the learning algorithm (unlike earlier works on “private learning” [16]).

3



runs in time |D| ·dÕ
(√

rk log(1/α)
)

and releases a summary that enables computing each of the r-of-k

queries on D up to an additive error of at most α, provided that |D| ≥ d
Õ
(√

rk log(1/α)
)

/ε.

Note that monotone k-way disjunctions are just r-of-k queries where r = 1, thus Theorem 1.2
implies a release algorithm for disjunctions with quadratically better dependence on log(1/α), at
the cost of slightly worse dependence on k (implicit in the switch from O(·) to Õ(·)).

Finally, we present a sanitizer for privately releasing databases in which the rows of the database
are interpreted as decision lists, and the queries are inputs to the decision lists. That is, instead of
each record in D being a string of d attributes, each record is an element of the set DLk,m, which
consists of all length-k decision lists over m input variables. (See Section 4.3 for a precise definition.)
A query is specified by a string y ∈ {0, 1}d and asks “What fraction of database participants would
make a certain decision based on the input y?”

As an example application, consider a database that allows high school students to express their
preferences for colleges in the form of a decision list. For example, a student may say, “If the school
is ranked in the top ten nationwide, I am willing to apply to it. Otherwise, if the school is rural,
I am unwilling to apply. Otherwise, if the school has a good basketball team then I am willing to
apply to it.” And so on. Each student is allowed to use up to k attributes out of a set of m binary
attributes. Our sanitizer allows any college (represented by its m binary attributes) to determine
the fraction of students willing to apply.

Theorem 1.3 (Releasing Decision Lists). For any k,m ∈ N s.t. k ≤ m, any α ∈ (0, 1], and any

ε > 1/n, there is an ε-differentially private sanitizer with running time mÕ(
√
k log(1/α)) that, on

input a database D ∈ (DLk,m)n, releases a summary that enables computing any length-k decision

list query up to an additive error of at most α on every query, provided that |D| ≥ mÕ(
√
k log(1/α))/ε.

For comparison, we note that all the results on releasing k-way disjunctions (including ours) also
apply to a dual setting where the database records specify a k-way disjunction over m bits and the
queries are m-bit strings (in this setting m plays the role of d). Theorem 1.3 generalizes this dual
version of Theorem 1.1, as length-k decision lists are a strict generalization of k-way disjunctions.

We prove the latter two results (Theorems 1.2 and 1.3) using the same approach outlined for
marginals (Theorem 1.1), but with different low-degree polynomial approximations appropriate for
the different types of queries.

On Synthetic Data. An attractive type of summary is a synthetic database. A synthetic
database is a new database D̂ ∈ ({0, 1}d)n̂ whose rows are “fake”, but such that D̂ approximately
preserves many of the statistical properties of the database D (e.g. all the marginals). Some of the
previous work on counting query release has provided synthetic data, starting with Barak et. al. [1]
and including [3, 7, 9, 13].

Unfortunately, Ullman and Vadhan [23] (building on [7]) have shown that no differentially
private sanitizer with running time dO(1) can take a database D ∈ ({0, 1}d)n and output a private
synthetic database D̂, all of whose 2-way marginals are approximately equal to those ofD (assuming
the existence of one-way functions). They also showed that there is a constant k ∈ N such that no

differentially private sanitizer with running time 2d
1−Ω(1)

can output a private synthetic database,
all of whose k-way marginals are approximately equal to those of D (under stronger cryptographic
assumptions).

4



Paper Running Time Database Size Error Typea Synthetic Data?

[5, 8, 2, 6] dO(k) O(dk/2/α) Worst case N

[1] 2O(d) O(dk/2/α) Worst case Y

[3, 7, 9, 13] 2O(d) Õ(k
√
d/α2) Worst case Y

[11] dÕ(1/α2) dÕ(1/α2) Product Dists. N

[4] dO(log(1/α)) dO(log(1/α)) Uniform Dist.b N

[15] dO(d1/3 log(1/α)) dO(d1/3 log(1/α)) Any Dist. N

[15] dO(k) dO(d1/3 log(1/α)) Worst case N

[15] dO(
√
k log(1/α)) dO(

√
k log(1/α)) Any Dist. N

[15] dO(k) dO(
√
k log(1/α)) Worst case N

This paper dO(
√
k log(1/α)) dO(

√
k log(1/α)) Worst case N

Table 1: Summary of prior results on differentially private release of k-way marginals. The database
size column indicates the minimum database size required to release answers to k-way marginals up
to an additive error of α. For clarity, we ignore the dependence on the privacy parameters and the
failure probability of the algorithms. Notice that this paper contains the first algorithm capable of
releasing k-way marginals with running time and worst-case error substantially smaller than the
number of queries.

a
Worst case error indicates that the accuracy guarantee holds for every marginal. The other types of error

indicate that accuracy holds for random marginals over a given distribution from a particular class of distributions
(e.g. product distributions).

bThe results of [4] apply only to the uniform distribution over all marginals.

When k = d, our sanitizer runs in time 2Õ(
√
d) and releases a private summary that enables an

analyst to approximately answer any marginal query on D. Prior to our work it was not known
how to release any summary enabling approximate answers to all marginals in time 2d

1−Ω(1)
. Thus,

our results show that releasing a private summary for all marginal queries can be done considerably
more efficiently if we do not require the summary to be a synthetic database (under the hardness
assumptions made in [23]).

2 Preliminaries

2.1 Differentially Private Sanitizers

Let a database D ∈ X n be a collection of n rows x(1), . . . , x(n) from a data universe X . We say that
two databases D1,D2 ∈ X n are adjacent if they differ only on a single row, and we denote this by
D1 ∼ D2.

A sanitizer A : X n → R takes a database as input and outputs some data structure in R. We
are interested in sanitizers that satisfy differential privacy.

Definition 2.1 (Differential Privacy [6]). A sanitizer A : X n → R is (ε, δ)-differentially private
if for every two adjacent databases D,D′ ∈ X n and every subset S ⊆ R, Pr [A(D) ∈ S] ≤
eε Pr [A(D′) ∈ S] + δ. In the case where δ = 0 we say that A is ε-differentially private.

Since a sanitizer that always outputs ⊥ satisfies Definition 2.1, we also need to define what it
means for a sanitizer to be accurate. In particular, we are interested in sanitizers that give accurate

5



answers to counting queries. A counting query is defined by a boolean predicate q : X → {0, 1}.
We define the evaluation of the query q on a database D ∈ X n to be q(D) = 1

n

∑n
i=1 q(x

(i)). We
use Q to denote a set of counting queries.

Since A may output an arbitrary data structure, we must specify how to answer queries in
Q from the output A(D). Hence, we require that there is an evaluator E : R × Q → R that
estimates q(D) from the output of A(D). For example, if A outputs a vector of “noisy answers”
Z = (q(D) + Zq)q∈Q, where Zq is a random variable for each q ∈ Q, then R = R

Q and E(Z, q) is
the q-th component of Z. Abusing notation, we write q(Z) and q(A(D)) as shorthand for E(Z, q)
and E(A(D), q), respectively. Since we are interested in the efficiency of the sanitization process as
a whole, when we refer to the running time of A, we also include the running time of the evaluator
E . We say that A is “accurate” for the query set Q if the values q(A(D)) are close to the answers
q(D). Formally,

Definition 2.2 (Accuracy). An output Z of a sanitizer A(D) is α-accurate for the query set Q if
|q(Z) − q(D)| ≤ α for every q ∈ Q. A sanitizer is (α, β)-accurate for the query set Q if for every
database D,

Pr [∀q ∈ Q, |q(A(D)) − q(D)| ≤ α] ≥ 1− β,

where the probability is taken over the coins of A.

We will make use of the Laplace mechanism. Let Lapk(σ) denote a draw from the random
variable over Rk in which each coordinate is chosen independently according to the density function
Lapσ(x) ∝ e−|x|/σ. Let D ∈ X n be a database and g : X n → R

k be a function such that for every
pair of adjacent databasesD ∼ D′, ‖g(D)−g(D′)‖∞ ≤ ∆. Then we have the following two theorems:

Lemma 2.3 (Laplace Mechanism, ε-Differential Privacy [6]). For D, g, k,∆ as above, the mech-
anism A(D) = g(D) + Lapk(∆k/ε) satisfies ε-differential privacy. Furthermore, for any β > 0,
PrA [‖g(D) −A(D)‖1 ≤ α] ≥ 1− β, for α = 2∆k2 log(k/β)/ε.

The choice of the L1 norm in the accuracy guarantee of the lemma is for convenience, and
doesn’t matter for the parameters of Theorems 1.1-1.3 (except for the hidden constants).

If the privacy requirement is relaxed to (ε, δ)-differential privacy (for δ > 0), then it is sufficient
to perturb each coordinate of g(D) with noise from a Laplace distribution of smaller magnitude,
leading to smaller error.

Lemma 2.4 (Laplace Mechanism, (ε, δ)-Differential Privacy [5, 8, 2, 9]). For D, g, k,∆ as above,
and for every δ > 0, the mechanism A(D) = g(D) + Lapk(3∆

√
k log(1/δ)/ε) satisfies (ε, δ)-

differential privacy. Furthermore, for any β > 0, PrA [‖g(D) −A(D)‖1 ≤ α] ≥ 1 − β, for α =
6∆k

√
k log(1/δ) log(k/β)/ε.

2.2 Query Function Families

We take the approach of Gupta et. al. [11] and think of the database D as specifying a function
fD mapping queries q to their answers q(D), which we call the Q-representation of D. We now
describe this transformation more formally:

Definition 2.5 (Q-Function Family). Let Q = {qy}y∈YQ⊆{0,1}m be a set of counting queries on a
data universe X , where each query is indexed by an m-bit string. We define the index set of Q to
be the set YQ = {y ∈ {0, 1}m | qy ∈ Q}.

6



We define the Q-function family FQ = {fx : {0, 1}m → {0, 1}}x∈X as follows: For every possible
database row x ∈ X , the function fQ,x : {0, 1}m → {0, 1} is defined as fQ,x(y) = qy(x). Given a
database D ∈ X n we define the function fQ,D : {0, 1}m → [0, 1] where fQ,D(q) =

1
n

∑n
i=1 fQ,x(i)(q).

When Q is clear from context we will drop the subscript Q and simply write fx, fD, and F .

For some intuition about this transformation, when the queries are monotone k-way disjunctions
on a database D ∈ ({0, 1}d)n, the queries are defined by sets S ⊆ [d] , |S| ≤ k. In this case each
query can be represented by the d-bit indicator vector of the set S, with at most k non-zero entries.

Thus we can take m = d and YQ =
{
y ∈ {0, 1}d | ∑d

j=1 yj ≤ k
}
.

2.3 Polynomial Approximations

An m-variate real polynomial p ∈ R[y1, . . . , ym] of degree t and (L∞) norm T can be written as
p(y) =

∑
j1,...,jm≥0
j1+···+jm≤t

cj1,...,jm
∏m

ℓ=1 y
jℓ
ℓ where |cj1,...,jm| ≤ T for every j1, . . . , jm. Recall that there

are at most
(m+t

t

)
coefficients in an m-variate polynomial of total degree t. Often we will want

to associate a polynomial p of degree t and norm T with its coefficient vector ~p ∈ [−T, T ](
m+t

t ).
Specifically, ~p = (cj1,...,jm) j1,...,jm≥0

j1+···+jm≤t
. Given a vector ~p and a point y ∈ {0, 1}m we use ~p(y) to

indicate the evaluation of the polynomial described by the vector ~p at the point y. Observe this

is equivalent to computing ~p · ~y where ~y ∈ {0, 1}(
m+t

t ) is defined as yj1,...,jm =
∏m

ℓ=1 y
jℓ
ℓ for every

j1, . . . , jm ≥ 0, j1 + · · ·+ jm ≤ t.
Let Pt,T be the family of all m-variate real polynomials of degree t and norm T . In many cases,

the functions fQ,x : {0, 1}m → {0, 1} can be approximated well on all the indices in YQ by a family
of polynomials Pt,T with low degree and small norm. Formally:

Definition 2.6 (Uniform Approximation by Polynomials). Given a family of m-variate functions
F = {fx}x∈X and a set Y ⊆ {0, 1}m, we say that the family Pt,T uniformly γ-approximates F on
Y if for every x ∈ X , there exists px ∈ Pt,T such that maxy∈Y |fx(y)− px(y)| ≤ γ.

We say that Pt,T efficiently and uniformly γ-approximates F if there is an algorithm PF that
takes x ∈ X as input, runs in time poly(log |X |,

(m+t
t

)
, log T ), and outputs a coefficient vector ~px

such that maxy∈Y |fx(y)− ~px(y)| ≤ γ.

3 From Polynomial Approximations to Data Release Algorithms

In this section we present an algorithm for privately releasing any family of counting queries Q
such that FQ that can be efficiently and uniformly approximated by polynomials. The algorithm
will take an n-row database D and, for each row x ∈ D, constructs a polynomial px that uniformly
approximates the function fQ,x (recall that fQ,x(q) = q(x), for each q ∈ Q). From these, it
constructs a polynomial pD = 1

n

∑
x∈D px that uniformly approximates fQ,D. The final step is to

perturb each of the coefficients of pD using noise from a Laplace distribution (Theorem 2.3) and
bound the error introduced from the perturbation.

Theorem 3.1 (Releasing Polynomials). Let Q = {qy}y∈YQ⊆{0,1}m be a set of counting queries

over {0, 1}d, and FQ be the Q function family (Definition 2.5). Assume that Pt,T efficiently and
uniformly γ-approximates FQ on YQ (Definition 2.6). Then there is a sanitizer A : ({0, 1}d)n →
R
(m+t

t ) that

7



1. is ε-differentially private,

2. runs in time poly(n, d,
(
m+t
t

)
, log T, log(1/ε)), and

3. is (α, β)-accurate for Q for α = γ +
4T(m+t

t )
2
log((m+t

t )/β)
εn .

Proof. First we construct the sanitizer A. See the relevant codebox below.

The Sanitizer A
Input: A database D ∈ ({0, 1}d)n, an explicit family of polynomials P, and a parameter ε > 0.
For i = 1, . . . , n

Using efficient approximation of F by P, compute a polynomial ~px(i) = PF (x(i)) that γ-
approximates fx(i) on YQ.
Let ~pD = 1

n

∑n
i=1 ~px(i) , where the sum denotes standard entry-wise vector addition.

Let ~̃pD = ~pD +Z, where Z is drawn from an
(m+t

t

)
-variate Laplace distribution with parameter

2T/εn (Section 2.1).
Output: p̃D.

Privacy. We establish that A is ε-differentially private. This follows from the observation that
for any two adjacent D ∼ D′ that differ only on row i∗,

‖~pD − ~pD′‖∞ =

∥∥∥∥∥
1

n

n∑

i=1

~px(i) − 1

n

n∑

i=1

~px′(i)

∥∥∥∥∥
∞

=
1

n
‖~px(i∗) − ~px′(i∗)‖∞ ≤ 2T

n
.

The last inequality is from the fact that for every x, ~px is a vector of L∞ norm at most T . Part 1
of the Theorem now follows directly from the properties of the Laplace Mechanism (Theorem 2.3).
Now we construct the evaluator E .

The Evaluator E for the Sanitizer A
Input: A vector ~̃p ∈ R

(m+t
t ) and the description of a query y ∈ {0, 1}m.

Output: ~̃p(y). Recall that we view ~̃p as an m-variate polynomial, p, and ~̃p(y) is the evaluation
of p on the point y.

Efficiency. Next, we show that A runs in time poly(n, d,
(
m+t
t

)
, log T, log(1/ε)). Recall that

we assumed the polynomial construction algorithm P runs in time poly(d,
(m+t

t

)
, log T ). The

algorithm A needs to run PF on each of the n rows, and then it needs to generate
(m+t

t

)
sam-

ples from a univariate Laplace distribution with magnitude poly(T,
(
m+t
t

)
, 1/n, 1/ε), which can

also be done in time poly(
(m+t

t

)
, log T, log n, log(1/ε)). We also establish that E runs in time

poly(
(m+t

t

)
, log T, log n, log(1/ε)), observe that E needs to expand the input into an appropriate

vector of dimension
(m+t

t

)
and take the inner product with the vector ~̃p, whose entries have mag-

nitude poly(
(m+t

t

)
, T, 1/n, 1/ε). These observations establish Part 2 of the Theorem.

8



Accuracy. Finally, we analyze the accuracy of the sanitizer A. First, by the assumption that Pt,T

uniformly γ-approximates F on Y ⊆ {0, 1}m, we have

max
y∈Y

|fD(y)− ~pD(y)| = max
y∈Y

∣∣∣∣∣
1

n

n∑

i=1

fx(i)(y)− 1

n

n∑

i=1

~px(i)(y)

∣∣∣∣∣

≤ 1

n

n∑

i=1

max
y∈Y

|fx(i)(y)− ~px(i)(y)| ≤ γ.

Now we want to establish that Pr
[
maxy∈{0,1}m

∣∣∣~̃pD(y)− ~pD(y)
∣∣∣ ≤ α′

]
≥ 1− β for

α′ =
4T

(
m+t
t

)2
log

((
m+t
t

)
/β

)

εn
,

where the probability is taken over the coins of A. Part (3) of the Theorem will then follow by the
triangle inequality.

To see that the above statement is true, observe that by the properties of the Laplace mechanism

(Theorem 2.3), we have Pr
[∥∥∥~̃pD − ~pD

∥∥∥
1
≤ α′

]
≥ 1−β, where the probability is taken over the coins

of A. Given that ‖~̃pD − ~pD‖1 ≤ α′, it holds that for every y ∈ {0, 1}m,
∣∣∣~̃pD(y)− ~pD(y)

∣∣∣ =
∣∣∣(~̃pD − ~pD)(y)

∣∣∣ ≤ ‖~̃pD − ~pD‖1 ≤ α′.

The first inequality follows from the fact that every monomial evaluates to 0 or 1 at the point y.
This completes the proof of the theorem.

Using Theorem 2.4, we can improve the bound on the error at the expense of relaxing the privacy
guarantee to (ε, δ)-differential privacy. This improved error only affects the hidden constants in
Theorems 1.1-1.3, so we only state those theorems for ε-differential privacy.

Theorem 3.2 (Releasing Polynomials, (ε, δ)-Differential Privacy). Let Q = {qy}y∈YQ⊆{0,1}m be a

set of counting queries over {0, 1}d, and FQ be the Q function family (Definition 2.5). Assume that
Pt,T efficiently and uniformly γ-approximates FQ on YQ (Definition 2.6). Then there is a sanitizer

A : ({0, 1}d)n → R
(m+t

t ) that

1. is (ε, δ)-differentially private,

2. runs in time poly(n, d,
(m+t

t

)
, log T, log(1/ε), log(1/δ)),

3. is (α, β)-accurate for Q for α = γ +
12T(m+t

t )
√
(m+t

t ) log(1/δ) log((m+t
t )/β)

εn .

The proof of this theorem is identical to that of Theorem 3.1, but using the analysis of the
Laplace mechanism from Theorem 2.4 in place of that of Theorem 2.3.

4 Applications

In this section we establish the existence of explicit families of low-degree polynomials approximat-
ing the families FQ for some interesting query sets.

9



4.1 Releasing Monotone Disjunctions

We define the class of monotone k-way disjunctions as follows:

Definition 4.1 (Monotone k-Way Disjunctions). Let X = {0, 1}d. The query set QDisj,k =
{qy}y∈Yk⊆{0,1}d of monotone k-way disjunctions over {0, 1}d contains a query qy for every y ∈
Yk =

{
y ∈ {0, 1}d | |y| ≤ k

}
. Each query is defined as qy(x1, . . . , xd) =

∨d
j=1 yjxj. The QDisj,k

function family FQDisj,k
= {fx}x∈{0,1}d contains a function fx(y1, . . . , yd) =

∨d
j=1 yjxj for every

x ∈ {0, 1}d.

Thus the family FQDisj,k
consists of all disjunctions, and the image ofQDisj,k, which we denote Yk,

consists of all vectors y ∈ {0, 1}d with at most k non-zero entries. We can approximate disjunctions
over the set Yk using a well-known transformation of the Chebyshev polynomials (see, e.g., [17,
Theorem 8] and [15, Claim 5.4]). First we recall the useful properties of the univariate Chebyshev
polynomials.

Fact 4.2 (Chebyshev Polynomials). For every k ∈ N and γ > 0, there exists a univariate real
polynomial gk(x) =

∑tk
i=0 cix

i of degree tk such that

1. tk = O(
√
k log(1/γ)),

2. for every i ∈ {0, 1, . . . , tk} , |ci| ≤ 2O(
√
k log(1/γ)),

3. gk(0) = 0, and

4. for every x ∈ {1, . . . , k}, 1− γ ≤ gk(x) ≤ 1 + γ.

Moreover, such a polynomial can be constructed in time poly(k, log(1/γ)) (e.g. using linear pro-
gramming, though more efficient algorithms are known).

We can use Lemma 4.2 to approximate k-way monotone disjunctions. Note that our result
easily extends to monotone k-way conjunctions via the identity
∧d
j=1xjyj = 1−∨d

j=1(1−xj)yj . Moreover, it extends to non-monotone conjunctions and disjunctions:

we may extend the data universe as in [15, Theorem 1.2] to {0, 1}2d, and include the negation of
each item in the original domain. Non-monotone conjunctions over domain {0, 1}d correspond to
monotone conjunctions over the expanded domain {0, 1}2d.

The next lemma shows that FQDisj,k
can be efficiently and uniformly approximated by poly-

nomials of low degree and low norm. The statement is a well-known application of Chebyshev
polynomials, and a similar statement appears in [15] but without bounding the running time of the
construction or a bound on the norm of the polynomials. We include the statement and a proof
for completeness, and to verify the additional properties we need.

Lemma 4.3 (Approximating FQDisj,k
by polynomials, similar to [15]). For every k, d ∈ N such that

k ≤ d and every γ > 0, the family Pt,T of d-variate real polynomials of degree t = O(
√
k log(1/γ))

and norm T = dO(
√
k log(1/γ)) efficiently and uniformly γ-approximates the family FQDisj,k

on the set
Yk.

10



PDisj,k

Input: a vector x ∈ {0, 1}d.
Let: gk be the polynomial described in Lemma 4.2.

Let: ~px ∈ R
(m+tk

tk
)
be the expansion of px(y1, . . . , yd) = gk

(∑d
j=1 yjxj

)
.

Output: ~px.

Proof. The algorithm PDisj,k for constructing the polynomials appears in the relevant codebox
above.

Since px is a degree-tk polynomial applied to a degree-1 polynomial (in the variables yj), its
degree is at most tk. To see the stated norm bound, note that every monomial of total degree i in px

comes from the expansion of
(∑d

j=1 yjxj

)i
, and every coefficient in this expansion is a non-negative

integer less than or equal to ki. In px, each of these terms is multiplied by ci (the i-th coefficient

of gk). Thus the norm of px is at most maxi∈{0,1,...,tk} k
i · |ci| = kO(

√
k log(1/γ)) = dO(

√
k log(1/γ)).

To see that PDisj,k is efficient, note that we can find every coefficient of px of total degree i by

expanding
(∑d

j=1 yjxj

)i
into all of its di terms and multiplying by ci, which can be done in time

poly(dtk) = poly(
(
d+tk
tk

)
), as is required.

To see that PDisj,k γ-approximates FQDisj,k
, observe that for every x, y ∈ {0, 1}d, fx(y) = 0 ⇒

px(y) = 0, and for every x ∈ {0, 1}d, y ∈ Yk, fx(y) = 1 ⇒ 1 − γ ≤ px(y) ≤ 1 + γ. This completes
the proof.

Theorem 1.1 in the introduction follows by combining Theorems 3.1 and 4.3.

4.2 Releasing Monotone r-of-k Queries

We define the class of monotone r-of-k queries as follows:

Definition 4.4 (Monotone r-of-k Queries). Let X = {0, 1}d and r, k ∈ N such that r ≤ k ≤ d.
The query set Qr,k = {qy}y∈Yk⊆{0,1}d of monotone r-of-k queries over {0, 1}d contains a query qy

for every y ∈ Yk =
{
y ∈ {0, 1}d | |y| ≤ k

}
. Each query is defined as qy(x1, . . . , xd) = 1∑d

j=1 yjxj≥r.

The Qr,k function family FQr,k
= {fx}x∈{0,1}d contains a function fx(y1, . . . , yd) = 1∑d

j=1 yjxj≥r for

every x ∈ {0, 1}d.

Sherstov [20, Lemma 3.11] gives an explicit construction of polynomials that can be used to ap-
proximate the family FQr,k

over Yk with low degree. It can be verified by inspecting the construction
that the coefficients of the resulting polynomial are not too large.

Lemma 4.5 ([20]). For every r, k ∈ N such that r ≤ k and γ > 0, there exists a univariate
polynomial gr,k : R → R of degree tr,k such that gr,k(x) =

∑tk
i=0 cix

i and

1. tr,k = O
(√

rk log(k) +
√

k log(1/γ) log(k)
)
,

2. for every i ∈ {0, 1, . . . , tk} , |ci| ≤ 2Õ(
√

kr log(1/γ)),

3. for every x ∈ {0, 1, . . . , r − 1}, −γ ≤ gr,k(x) ≤ γ, and

11



4. for every x ∈ {r, . . . , k}, 1− γ ≤ gr,k(x) ≤ 1 + γ.

Moreover, gr,k can be constructed in time poly(k, r, log(1/γ)) (e.g. using linear programming).

For completeness we include a proof of Lemma 4.5 in the appendix. We can use these polyno-
mials to approximate monotone r-of-k queries.

Lemma 4.6 (Approximating FQr,k
on Yk). For every r, k, d ∈ N such that r ≤ k ≤ d and every

γ > 0, the family Pt,T of d-variate real polynomials of degree t = Õ(
√

kr log(1/γ)) and norm

T = dÕ(
√

kr log(1/γ)) efficiently and uniformly γ-approximates the family FQr,k
on the set Yk.

Proof. The construction and proof is identical to that of Theorem 4.3 with the polynomials of
Lemma 4.5 in place of the polynomials described in Lemma 4.2.

Theorem 1.2 in the introduction now follows by combining Theorems 3.1 and 4.6. Note that
our result also extends easily to non-monotone r-of-k queries in the same manner as Theorem 1.1.

Remark 4.7. Using the principle of inclusion-exclusion, the answer to a monotone r-of-k query
can be written as a linear combination of the answers to kO(r) monotone k-way disjunctions. Thus,
a sanitizer that is (α/kO(r), β)-accurate for monotone k-way disjunctions implies a sanitizer that is
(α, β)-accurate for monotone r-of-k queries. However, combining this implication with Theorem 1.1

yields a sanitizer with running time dO(r
√
k log(k/β)), which has a worse dependence on r than what

we achieve in Theorem 1.2.

4.3 Releasing Decision Lists

A length-k decision list over m variables is a function which can be written in the form “if ℓ1 then
output b1 else · · · else if ℓk then output bk else output bk+1,” where each ℓi is a boolean literal
in {x1, . . . , xm}, and each bi is an output bit in {0, 1}. Note that decision lists of length-k strictly
generalize k-way disjunctions and conjunctions. We use DLk,m to denote the set of all length-k
decision lists over m binary input variables.

Definition 4.8 (Evaluations of Length-k Decision Lists). Let k,m ∈ N such that k ≤ m and
X = DLk,m. The query set QDLk,m

= {qy}y∈{0,1}m of evaluations of length-k decision lists contains

a query qy for every y ∈ {0, 1}m. Each query is defined as qy(x) = x(y) where x ∈ DLk,m is
a length-k decision list over m variables. The QDLk,m

function family FQDLk,m
= {fx}x∈DLk,m

contains functions fx(y) = x(y) for every x ∈ DLk,m. That is, FQDLk,m
= DLk,m.

We clarify that in this setting, the records in the database are length-k decision lists over {0, 1}m
and the queries inputs in {0, 1}m. Thus |X | = |DLk,m| = mO(k) and |Q| = 2m. Alternatively,
X = {0, 1}d for d = k(logm + 2) + 1, since a length-k decision list can be described using this
many bits. Klivans and Servedio [17, Claim 5.4] have shown that decision lists of length k can be
uniformly approximated to accuracy γ by low-degree polynomials. We give a self-contained proof
of this fact in Appendix A for completeness.

Lemma 4.9 ([17]). For every k,m ∈ N such that k ≤ m and every γ > 0, the family Pt,T of

m-variate real polynomials of degree Õ
(√

k log(1/γ)
)
and norm T = mÕ(

√
k log(1/γ)) efficiently and

uniformly γ-approximates the family FQDLk,m
= DLk,m on all of {0, 1}m.

We obtain Theorem 1.3 of the introduction by combining Theorems 3.1 and 4.9.

12



5 Generalizations and Limitations of Our Approach

We note that the approach we take is not specific to low-degree polynomials. Theorem 3.1 extends to
the case where the family FQ is efficiently and uniformly approximated on YQ by linear combinations
of functions from any efficiently computable set S (In the case of polynomials, S is the set of all
monomials of total degree at most t). The properties we require from the function family S are that
it (1) it is relatively small (as it determines our running time and minimum database size), (2) for
every x ∈ X , we can efficiently compute~bx ∈ R

S such that maxy∈YQ |fx(y)−
∑

s∈S
~bx,s·s(y)| ≤ γ, and

(3) s(y) is small (say, at most c) for every s ∈ S and y ∈ YQ. In the special case of approximation by
m-variate real polynomials of degree t and norm T , we can take S to be the set of monomials of total
degree t, thus |S| =

(m+t
t

)
and c = 1. If we have those parameters, then similarly to Theorem 3.1 we

can obtain an ε-differentially private sanitizer with running time poly(n, log |X |, |S|, log T, log(1/ε))
and accuracy α = γ +O(cT |S|2 log(|S|/β)/εn).

Unfortunately, it turns out that, for all of the query sets considered in this paper, there is not
much to be gained from considering more general functions families S. Indeed, Klivans and Sherstov
[18, Theorem 1.1] show that even if S consists of arbitrary functions s1, . . . , sℓ : {0, 1}k → R whose
linear combinations can uniformly approximate every monotone disjunction on k variables to error

±1/3, then ℓ ≥ 2Ω(
√
k). Note that, up to logarithmic factors, this matches the dependence on k of

the upper bound of Lemma 4.3. Moreover, Sherstov [21, Theorem 8.1] broadly extends the result
of [18] beyond disjunctions, to pattern matrices of any Boolean function f with high approximate
degree. Roughly speaking, the pattern matrix of f corresponds to the query set consisting of
all restrictions of f , with some variables possibly negated (see [21] for a precise definition). In
particular, [21, Theorem 8.1] implies a function family independent lower bound for non-monotone
r-of-k queries; up to logarithmic factors, this lower bound matches the dependence on r and k of
the upper bound of Lemma 4.6.

We also note that our algorithm can be implemented in Kearns’ statistical queries model. In
the statistical queries model, algorithms can only access the database through a statistical queries
oracle STAT(D, τ) that takes as input a predicate q : {0, 1}d → [0, 1] and returns a value a such
that Ex∈D [q(x)] ∈ [a ± τ ]. It can be verified that our algorithm can be implemented using

(m+t
t

)

queries to STAT(D, τ) for τ = 1/
(
m+t
t

)
T 2, using one query to obtain each noisy coefficient (scaled

to the range [0, 1]). In this case of k-literal conjunctions, our algorithm makes dO(
√
k log(1/α)) queries

and requires τ = 1/dO(
√
k log(1/α)).

Connections between differentially private data analysis and the statistical queries model have
been studied extensively [2, 16, 11]. Gupta et. al. showed that lower bounds for agnostic learning
in the statistical queries model also imply lower bounds for data release in the statistical queries
model. Specifically, applying a result of Feldman [10], they show that for every α = α(d) = o(1), for
k = k(d) = Θ(log(1/α(d))) = ω(1), and for every constant c > 0, there is no algorithm that makes
dc queries to STAT(D, d−c), for D ∈ ({0, 1}d)∗, and releases α-accurate answers to all monotone
k-way disjunction queries on D. Notice that our algorithm only makes a polynomial number of
statistical queries when both k and α are constant.

Acknowledgements

We thank Vitaly Feldman, Moritz Hardt, Varun Kanade, Aaron Roth, Guy Rothblum, and Li-Yang
Tan for helpful discussions.

13



References

[1] Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy,
and consistency too: a holistic solution to contingency table release. In: Libkin, L. (ed.) PODS.
pp. 273–282. ACM (2007)

[2] Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In:
Li, C. (ed.) PODS. pp. 128–138. ACM (2005)

[3] Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy.
In: Dwork, C. (ed.) STOC. pp. 609–618. ACM (2008)

[4] Cheraghchi, M., Klivans, A., Kothari, P., Lee, H.K.: Submodular functions are noise stable.
In: Randall, D. (ed.) SODA. pp. 1586–1592. SIAM (2012)

[5] Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS. pp. 202–210.
ACM (2003)

[6] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private
data analysis. In: TCC ’06. pp. 265–284 (2006)

[7] Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complexity of
differentially private data release: efficient algorithms and hardness results. In: STOC ’09. pp.
381–390 (2009)

[8] Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned databases. In:
Franklin, M.K. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 3152, pp. 528–544.
Springer (2004)

[9] Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In: FOCS. pp.
51–60. IEEE Computer Society (2010)

[10] Feldman, V.: A complete characterization of statistical query learning with applications to
evolvability. In: FOCS. pp. 375–384. IEEE Computer Society (2009)

[11] Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and the statistical
query barrier. In: STOC ’11. pp. 803–812 (2011)

[12] Gupta, A., Roth, A., Ullman, J.: Iterative constructions and private data release. In: Cramer,
R. (ed.) TCC. Lecture Notes in Computer Science, vol. 7194, pp. 339–356. Springer (2012)

[13] Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differentially private
data release. CoRR abs/1012.4763 (2010)

[14] Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data
analysis. In: FOCS. pp. 61–70. IEEE Computer Society (2010)

[15] Hardt, M., Rothblum, G.N., Servedio, R.A.: Private data release via learning thresholds. In:
Randall, D. (ed.) SODA. pp. 168–187. SIAM (2012)

[16] Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we
learn privately? SIAM J. Comput. 40(3), 793–826 (2011)

14



[17] Klivans, A.R., Servedio, R.A.: Toward attribute efficient learning of decision lists and parities.
In: Shawe-Taylor, J., Singer, Y. (eds.) COLT. Lecture Notes in Computer Science, vol. 3120,
pp. 224–238. Springer (2004)

[18] Klivans, A.R., Sherstov, A.A.: Lower bounds for agnostic learning via approximate rank.
Computational Complexity 19(4), 581–604 (2010)

[19] Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: STOC ’10. pp.
765–774 (2010)

[20] Sherstov, A.A.: Approximate inclusion-exclusion for arbitrary symmetric functions. Compu-
tational Complexity 18(2), 219–247 (2009)

[21] Sherstov, A.A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000 (2011)

[22] Thaler, J., Ullman, J., Vadhan, S.: Faster algorithms for privately releasing marginals. In:
ICALP (2012)

[23] Ullman, J., Vadhan, S.P.: PCPs and the hardness of generating private synthetic data. In:
TCC ’11. pp. 400–416 (2011)

A Polynomial Approximation of Decision Lists

Lemma A.1 (Theorem 4.9 restated, [17]). For every k,m ∈ N such that k ≤ m and every γ > 0, the

family Pt,T of m-variate real polynomials of degree Õ
(√

k log(1/γ)
)
and norm T = mÕ(

√
k log(1/γ))

efficiently and uniformly γ-approximates the family FQDLk,m
= DLk,m on all of {0, 1}m.

Proof. By Theorem 3.1, it is sufficient to show that if f(y) is any length-k decision list over {0, 1}m,
then f(y) can be γ-approximated by an explicit family of polynomials of degree Õ(

√
k log(1/γ))

and norm mÕ(
√
k log(1/γ)). To this end, write f(y) in the form, “if ℓ1 then output b1 else · · · else

if ℓk then output bk else output bk+1,” where each ℓi is a boolean literal, and each bi is an output
bit in {0, 1}. Assume for notational convenience that ℓi = yi for all i; the proof for general decision
lists is similar.

Following [17, Theorem 8], we may write

f(y) = b1y1 + b2(1− y1)y2

+ . . .

+ bk(1− y1) . . . (1− yk−1)yk + bk+1(1− y1)(1− y2) . . . (1− yk).

At a high level, we treat each term of the above sum independently, using a transformation of
the Chebyshev polynomials to approximate each term within additive error γ/k. This ensures that
that the sum of the resulting polynomials approximates fQ,x(y) within additive error γ as desired.
Details follow.

Let gk be the polynomial described in Lemma 4.2 with error parameter γ′ = γ/k. Then the
polynomial hk(z) = 1− gk(k − z) satisfies the following properties:

1. The degree of hk is tk = O(
√
k log(k/γ)),

15



2. for every i ∈ {0, 1, . . . , tk}, the i-th coefficient, ci, of hk has magnitude |ci| ≤ 2Õ(
√
k log(1/γ)),

3. hk(k) = 1, and

4. for every z ∈ {0, . . . , k − 1}, |hk(z)| ≤ γ
k .

Moreover, hk can be constructed in time poly(k, log(1/γ)) (e.g. using linear programming, though
faster algorithms for constructing hk are known).

Consider the polynomial px defined as

px(y) = b1 · hk (y1 + (k − 1)) + b2 · hk ((1− y1) + y2 + (k − 2)) + . . .
+ bk · hk ((1− y1) + (1− y2) + · · ·+ (1− yk−1) + yk)
+ bk+1 · hk ((1− y1) + (1− y2) + · · · + (1− yk)) .

It is easily seen that px is has degree O(
√
k log(k/γ)) and the absolute value of each of the

coefficients is at most 2Õ(
√
k log(1/γ)). Moreover, |px(y) − f(y)| ≤ γ for all y ∈ {0, 1}m. This

completes the proof.

B Polynomial Approximation of r-of-k Queries

Lemma B.1 (Lemma 4.5 restated,[20]). For every r, k ∈ N such that r ≤ k and γ > 0, there exists
a univariate polynomial gr,k : R → R of degree tr,k such that gr,k(x) =

∑tk
i=0 cix

i and:

1. tr,k = O
(√

rk log(k) +
√

k log(1/γ) log(k)
)
,

2. for every i ∈ {0, 1, . . . , tk} , |ci| ≤ 2Õ(
√

kr log(1/γ)),

3. for every x ∈ {0, 1, . . . , r − 1}, −γ ≤ gr,k(x) ≤ γ, and

4. for every x ∈ {r, . . . , k}, 1− γ ≤ gr,k(x) ≤ 1 + γ.

Moreover, gr,k can be constructed in time poly(k, r, log(1/γ)) (e.g. using linear programming).

We give details for the construction of [20, Lemma 3.11]. We do not prove the approximation
properties (which is done in [20]), but just confirm the sizes of the coefficients. The result is
trivial if r = Ω̃(k) or log(1/γ) = Ω̃(k) since every symmetric function on {0, 1, . . . , k} has an exact
representation as a polynomial of degree k, so assume r < k/ log2 k and log(1/γ) ≤ k/ log k, with
k ≥ 2.

Let Tz be the degree z Chebyshev polynomial of the first kind (Fact B.2). We will use the
following well-known properties of Chebyshev polynomials.

Fact B.2. The Chebyshev polynomials of the first kind satisfy the following properties.

1. Each coefficient of Tz has absolute value at most 3z.

2. Tz(t) ≥ 1 for all t ≥ 1.

Let ∆ =
⌈ log(k/γ)

logn

⌉
, and z = 3∆

⌈
log k

⌉
. The construction proceeds in several steps, with the

final polynomial p defined in terms of multiple intermediate polynomials.

16



1. For any fixed integer 0 < ℓ < r, let

p1,ℓ(t) = T⌈√k−ℓ−∆
ℓ+∆

⌉
(

t

k − ℓ−∆

)
.

All the coefficients of p1,ℓ(t) are bounded in absolute value by 3deg(p1,ℓ) = 2
Õ
(√

k−ℓ−∆
ℓ+∆

)

.

2. Define

p2,ℓ(t) =

(
p1,ℓ(t)− p1,ℓ(k − ℓ)

8

)2

.

The coefficients of p2,ℓ are bounded in absolute value by

kO(deg(p2,ℓ)) = kO(deg(p1,ℓ)) = 2
Õ
(√

k−ℓ−∆
ℓ+∆

)

.

3. Define the polynomial

p3,ℓ(t) := T⌈ 8(d+1)(ℓ+∆)√
2∆

⌉
(
1 +

∆2

64(ℓ+∆)2
− p2(t)

)
.

p3,ℓ(t) has degree at most

deg(p3,ℓ) = 22(d + 1)
√

k(ℓ+∆)/∆

= O
(√

k(ℓ+∆) log k
)
= O

(√
kℓ log k +

√
k log k log(1/γ)

)
.

Noting that ∆2

64(ℓ+∆)2 < 1, it is clear that the coefficients of p3,ℓ(t) are bounded in absolute

value by kO(deg(p3,ℓ)).

4. Define the polynomial p4,ℓ(t) =
p3,ℓ(t)

p3,ℓ(k−ℓ) . Since

p3(k − ℓ) = T⌈ 8(d+1)(ℓ+∆)√
2∆

⌉
(
1 +

∆2

64(ℓ+∆)2
− 0

)
,

by Part 2 of Fact B.2, the absolute values of the coefficients of p4,ℓ are no larger than those
of p3.

5. Define the univariate polynomial

q1(t) =
∏

i=−(∆−1),...,(∆−1),i 6=0

(t− (k − ℓ− i)).

The coefficients of q1(t) have absolute value at most kO(∆).

6. Define the polynomial

q2,ℓ(t) =
1

q1(k − ℓ)
· p4,ℓ(t)q1(t).

Noticing that |q1(k − ℓ)| > 1, it is clear that the degree of q2,ℓ is O(∆ + deg(p4,ℓ)), and the

absolute values of the coefficients of q2,ℓ(t) are at most 2Õ(∆+deg(p3,ℓ)).

17



7. Define the polynomial q3,ℓ(t) = q2,ℓ(k − t). The absolute value of the coefficients of q3,ℓ are

also bounded above by 2Õ(∆+deg(p3,ℓ)).

Sherstov’s arguments show that q3,ℓ is a
γ
k -approximation to the function

EXACTℓ(t) =

{
1 if t = ℓ

0 for all other t ∈ {0, . . . , k}
.

8. The final polynomial p(t) is defined as

p(t) = 1−
∑

ℓ∈{0,1,...,r−1}
q3,ℓ(t).

The coefficients of p(t) have absolute value at most 2Õ(∆+deg(p3,r)), and p has the desired
degree. Moreover, p(t) γ-approximates the function 1t≥r(t) on the set {0, . . . , k}, since the
jth term in the sum

∑
ℓ∈{0,1,...,r−1} q3,ℓ(t) is a γ/k approximation for the function EXACTj(t).

Since log(1/γ) < k
log k , it holds that ∆ <

√
k log 1/γ. Thus, the coefficients of p(t) have

absolute value at most 2Õ(deg(p3,r)) = 2Õ(
√
kr+

√
k log(1/γ)).

18


	1 Introduction
	1.1 Our Results and Techniques

	2 Preliminaries
	2.1 Differentially Private Sanitizers
	2.2 Query Function Families
	2.3 Polynomial Approximations

	3 From Polynomial Approximations to Data Release Algorithms
	4 Applications
	4.1 Releasing Monotone Disjunctions
	4.2 Releasing Monotone r-of-k Queries
	4.3 Releasing Decision Lists

	5 Generalizations and Limitations of Our Approach
	A Polynomial Approximation of Decision Lists
	B Polynomial Approximation of r-of-k Queries

